MT305.01: Advanced Calculus for Science Majors
Final Examination
Answers

1. (15 points) Find the general solution to the differential equation

$$
\frac{d^{2} y}{d x^{2}}+4 y=\sin (2 x) .
$$

Answer: One way to proceed is to use undetermined coefficients. Variations of parameters also works, if you prefer that method. The solution of the homogeneous differential equation $y^{\prime \prime}+4 y=0$ is $y_{h}=C_{1} \cos 2 x+C_{2} \sin 2 x$. Therefore, the guess must be $y_{p}=A x \cos 2 x+$ $B x \sin 2 x=x(A \cos 2 x+B \sin 2 x)$. We compute

$$
\begin{aligned}
y_{p}^{\prime} & =A \cos 2 x+B \sin 2 x+x(-2 A \sin 2 x+2 B \cos 2 x) \\
y_{p}^{\prime \prime} & =-4 A \sin 2 x+4 B \cos 2 x+x(-4 A \cos 2 x-4 B \sin 2 x)
\end{aligned}
$$

and so

$$
\begin{aligned}
y_{p}^{\prime \prime}+4 y_{p} & =-4 A \sin 2 x+4 B \cos 2 x+x(-4 A \cos 2 x-4 B \sin 2 x)+4 x(A \cos 2 x+B \sin 2 x) \\
& =-4 A \sin 2 x+4 B \cos 2 x
\end{aligned}
$$

Setting $-4 A \sin 2 x+4 B \cos 2 x$ equal to $\sin 2 x$, we conclude that $B=0$ and $-4 A=1$, implying $A=-1 / 4$.

Therefore, the general solution is $y=-x \cos (2 x) / 4+C_{1} \cos (2 x)+C_{2} \sin (2 x)$.
2. (10 points) Suppose that $f(t)$ is a differentiable function of exponential order, so that we can compute its Laplace transform. Suppose that $\mathscr{L}(f)=F(s)$. Derive the formula

$$
\mathscr{L}\left(f^{\prime}(t)\right)=s F(s)-f(0) .
$$

Answer: We use the definition and integrate by parts, setting $u=e^{-s t}, d v=f^{\prime}(t) d t$, $d u=-s e^{-s t} d t$, and $v=f(t)$:

$$
\begin{aligned}
\mathscr{L}\left(f^{\prime}(t)\right) & =\int_{0}^{\infty} f^{\prime}(t) e^{-s t} d t=\left.f(t) e^{-s t}\right|_{0} ^{\infty}+\int_{0}^{\infty} f(t) s e^{-s t} d t \\
& =\left.f(t) e^{-s t}\right|_{0} ^{\infty}+s \int_{0}^{\infty} f(t) e^{-s t} d t=\left.f(t) e^{-s t}\right|_{0} ^{\infty}+s F(s)
\end{aligned}
$$

Now, if $s>0$, we know that $\lim _{t \rightarrow \infty} f(t) e^{-s t}=0$, because $f(t)$ has exponential order, so we conclude that $\left.f(t) e^{-s t}\right|_{0} ^{\infty}+s F(s)=-f(0)+s F(s)$.
3. (10 points) Suppose that a and b are non-zero real numbers. Find the general solution of

$$
\frac{d y}{d x}=a x+b y
$$

Answer: Rewrite the differential equation as $y^{\prime}-b y=a x$, and we see that an integrating factor is $e^{-b x}$. Multiply by this factor, and the equation becomes $a x e^{-b x}=e^{-b x} y^{\prime}-b e^{-b x} y=\left(y e^{-b x}\right)^{\prime}$. Integration yields

$$
y e^{-b x}=\int a x e^{-b x} d x=-\frac{a x e^{-b x}}{b}-\frac{a e^{-b x}}{b^{2}}+C
$$

$$
y=-\frac{a x}{b}-\frac{a}{b^{2}}+C e^{b x}
$$

4. (15 points) Solve the differential equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ for $0 \leq x \leq \pi, 0 \leq y \leq \pi$ with the boundary conditions

$$
\begin{align*}
u_{x}(0, y) & =u(0, y) \tag{1}\\
u(\pi, y) & =2 \tag{2}\\
u(x, 0) & =0 \tag{3}\\
u(x, \pi) & =0 \tag{4}
\end{align*}
$$

Be sure to explain fully how you arrived at the possible values of the separation constant.
Answer: We write $u(x, y)=X(x) Y(y)$, and arrive at the differential equation $X^{\prime \prime} Y+X Y^{\prime \prime}=0$. Boundary condition (3) implies that $Y(0)=0$, and boundary condition (4) implies that $Y(\pi)=0$.

Separate the differential equation into $-X^{\prime \prime} / X=Y^{\prime \prime} / Y=-k$, so $Y^{\prime \prime}+k Y=0$. We have the usual three possibilities:
(i) $k=0$. In this case, $Y=a y+b$. The condition $Y(0)=0$ forces $b=0$, and then the condition $Y(\pi)=0$ forces $a=0$. We are left with the trivial solution.
(ii) $k=-\alpha^{2}<0$, with $\alpha>0$. In this case, $Y=A \cosh \alpha y+B \sinh \alpha y$. The condition $Y(0)=0$ forces $A=0$ and $Y=B \sinh \alpha y$. The condition $Y(\pi)=0$ forces $B=0$, because $\sinh t>0$ if $t>0$.
(iii) $k=\alpha^{2}>0$, with $\alpha>0$. In this case, $Y=A \cos \alpha y+B \sin \alpha y$. The condition $Y(0)=0$ forces $A=0$, and the condition $Y(\pi)=0$ forces $\sin \alpha \pi=0$, with conclusion $\alpha=n, k=n^{2}$, and $Y_{n}=\sin n y$.
We now confront $X^{\prime \prime} / X=n^{2}$, or $X^{\prime \prime}-n^{2} X=0$, with solution $X_{n}=A \cosh n x+B \sinh n x$. Boundary condition (1) implies that $X^{\prime}(0)=X(0)$. We see that $X(0)=A$ and $X^{\prime}(0)=n B$, so $A=n B$. Substitution yields $X_{n}=B_{n}(n \cosh n x+\sinh n x)$. Therefore, $u_{n}(x, y)=$ $B_{n}(n \cosh n x+\sinh n x) \sin n y$.

Finally, we apply boundary condition (2):

$$
\begin{aligned}
u(x, y) & =\sum_{n=1}^{\infty} u_{n}(x, y)=\sum_{n=1}^{\infty} B_{n}(n \cosh n x+\sinh n x) \sin n y \\
2 & =\sum_{n=1}^{\infty} B_{n}(n \cosh n \pi+\sinh n \pi) \sin n y
\end{aligned}
$$

and the theory of Fourier series tells us that

$$
\begin{aligned}
B_{n}(n \cosh n \pi+\sinh n \pi) & =\frac{2}{\pi} \int_{0}^{\pi} 2 \sin n y d y=\frac{4}{n \pi}(1-\cos n \pi)=\frac{4\left(1-(-1)^{n}\right)}{n \pi} \\
B_{n} & =\frac{4\left(1-(-1)^{n}\right)}{n \pi(n \cosh n \pi+\sinh n \pi)} \\
u(x, y) & =\sum_{n=1}^{\infty} \frac{4\left(1-(-1)^{n}\right)}{n \pi(n \cosh n \pi+\sinh n \pi)}(n \cosh n x+\sinh n x) \sin n y
\end{aligned}
$$

5. (10 points) Write a solution to the differential equation

$$
\left(t^{2}+2 t\right) \frac{d^{2} y}{d t^{2}}+2(t+1) \frac{d y}{d t}-7 y=0
$$

in the form $y=\sum_{n=0}^{\infty} a_{n} t^{n+r}$, with $a_{0}=1$. Show that $r=0$, and compute the first 3 non-zero coefficients of the power series (not including a_{0}).
Answer: We have

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} t^{n+r} \\
\frac{d y}{d t} & =\sum_{n=0}^{\infty} a_{n}(n+r) t^{n+r-1} \\
2 t \frac{d y}{d t} & =\sum_{n=0}^{\infty} 2 a_{n}(n+r) t^{n+r} \\
\frac{d^{2} y}{d t^{2}} & =\sum_{n=0}^{\infty} a_{n}(n+r)(n+r-1) t^{n+r-2} \\
2 t \frac{d^{2} y}{d t^{2}} & =\sum_{n=0}^{\infty} 2 a_{n}(n+r)(n+r-1) t^{n+r-1} \\
t^{2} \frac{d^{2} y}{d t^{2}} & =\sum_{n=0}^{\infty} a_{n}(n+r)(n+r-1) t^{n+r}
\end{aligned}
$$

and therefore

$$
\begin{aligned}
t^{2} y^{\prime \prime}+2 t y^{\prime \prime}+2 t y^{\prime}+2 y^{\prime}-7 y & =\sum_{n=0}^{\infty} a_{n}(n+r)(n+r-1) t^{n+r} \\
& +\sum_{n=0}^{\infty} 2 a_{n}(n+r)(n+r-1) t^{n+r-1} \\
& +\sum_{n=0}^{\infty} 2 a_{n}(n+r) t^{n+r}+\sum_{n=0}^{\infty} 2 a_{n}(n+r) t^{n+r-1} \\
& -\sum_{n=0}^{\infty} 7 a_{n} t^{n+r}=0
\end{aligned}
$$

We start by computing the coefficient of t^{r-1}, which occurs only in the second and fourth sums when $n=0$. We have $\left(2 a_{0} r(r-1)+2 a_{0} r\right) t^{r-1}=0$. Because $a_{0}=1$, we get the equation $r^{2}=0$, with solution $r=0$.

Rewriting the equation with $r=0$, we have

$$
\begin{aligned}
t^{2} y^{\prime \prime}+2 t y^{\prime \prime}+2 t y^{\prime}+2 y^{\prime}-7 y & =\sum_{n=0}^{\infty} a_{n}(n)(n-1) t^{n}+\sum_{n=0}^{\infty} 2 a_{n}(n)(n-1) t^{n-1} \\
& +\sum_{n=0}^{\infty} 2 a_{n}(n) t^{n}+\sum_{n=0}^{\infty} 2 a_{n}(n) t^{n-1}-\sum_{n=0}^{\infty} 7 a_{n} t^{n}=0
\end{aligned}
$$

Reindex the second and fourth sums, and we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} a_{n}(n)(n-1) t^{n} & +\sum_{n=0}^{\infty} 2 a_{n+1}(n+1)(n) t^{n} \\
& +\sum_{n=0}^{\infty} 2 a_{n}(n) t^{n}+\sum_{n=0}^{\infty} 2 a_{n+1}(n+1) t^{n}-\sum_{n=0}^{\infty} 7 a_{n} t^{n}=0 \\
a_{n}\left(n^{2}+n-7\right) & =-2 a_{n+1}(n+1)^{2} \\
a_{n+1} & =-\frac{a_{n}\left(n^{2}+n-7\right)}{2(n+1)^{2}} \\
a_{0} & =1 \\
a_{1} & =-\frac{-7}{2}=\frac{7}{2} \\
a_{2} & =-\frac{7}{2}\left(\frac{-5}{8}\right)=\frac{35}{16} \\
a_{3} & =-\frac{35}{16}\left(\frac{-1}{18}\right)=\frac{35}{288}
\end{aligned}
$$

6. (10 points) Let b be a positive real number which is not an integer. Write $\cos b x$ in a Fourier series:

$$
\cos b x=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x+b_{n} \sin n x, \quad-\pi \leq x \leq \pi
$$

Compute a_{0}, a_{n}, and b_{n} in terms of b. Then substitute $x=\pi$ into the Fourier series and rearrange to get the formula

$$
\pi b \cot \pi b=1+\sum_{n=1}^{\infty} \frac{2 b^{2}}{b^{2}-n^{2}} .
$$

Answer: Because $\cos b x$ is an even function, we know immediately that $b_{n}=0$. We compute

$$
\begin{aligned}
a_{0} & =\frac{1}{\pi} \int_{0}^{\pi} \cos b x d x=\left.\frac{1}{b \pi} \sin b x\right|_{0} ^{\pi}=\frac{\sin b \pi}{b \pi} \\
a_{n} & =\frac{2}{\pi} \int_{0}^{\pi} \cos n x \cos b x d x=\left.\frac{2}{\pi\left(b^{2}-n^{2}\right)}(b \cos (n x) \sin (b x)-n \sin (n x) \cos (b x))\right|_{0} ^{\pi} \\
& =\frac{2}{\pi\left(b^{2}-n^{2}\right)}(b \cos (n \pi) \sin (b \pi))=\frac{2 b(-1)^{n} \sin (b \pi)}{\pi\left(b^{2}-n^{2}\right)} \\
\cos b x & =\frac{\sin b \pi}{b \pi}+\sum_{n=1}^{\infty} \frac{2 b(-1)^{n} \sin (b \pi)}{\pi\left(b^{2}-n^{2}\right)} \cos n x=\frac{\sin b \pi}{b \pi}\left(1+\sum_{n=1}^{\infty} \frac{2 b^{2}(-1)^{n} \cos n x}{b^{2}-n^{2}}\right)
\end{aligned}
$$

Substitute $x=\pi$:

$$
\cos b \pi=\frac{\sin b \pi}{b \pi}\left(1+\sum_{n=1}^{\infty} \frac{2 b^{2}(-1)^{n} \cos n \pi}{b^{2}-n^{2}}\right)=\frac{\sin b \pi}{b \pi}\left(1+\sum_{n=1}^{\infty} \frac{2 b^{2}}{b^{2}-n^{2}}\right)
$$

$$
\frac{b \pi \cos b \pi}{\sin b \pi}=1+\sum_{n=1}^{\infty} \frac{2 b^{2}}{b^{2}-n^{2}}
$$

7. (15 points) Give the general solution of

$$
\frac{d^{2} x}{d t^{2}}-\frac{d x}{d t}+\frac{x}{4}=\frac{\sqrt{t e^{t}}}{4}
$$

Answer: We use variation of parameters. To solve $x^{\prime \prime}-x^{\prime}+x / 4=0$, we solve $k^{2}-k+1 / 4=0$, with solution $k=1 / 2$, and therefore the solution of the homogeneous differential equation is $x=A e^{t / 2}+B t e^{t / 2}$. Write $y_{1}=e^{t / 2}$ and $y_{2}=t e^{t / 2}$, with $y_{1}^{\prime}=e^{t / 2} / 2$ and $y_{2}^{\prime}=e^{t / 2}+t e^{t / 2} / 2$, and we have

$$
\begin{aligned}
u_{1}^{\prime} e^{t / 2}+u_{2}^{\prime} t e^{t / 2} & =0 \\
u_{1}^{\prime} e^{t / 2} / 2+u_{2}^{\prime}\left(t e^{t / 2} / 2+e^{t / 2}\right) & =\frac{t^{1 / 2} e^{t / 2}}{4}
\end{aligned}
$$

Multiply the second equation by 2 to get:

$$
u_{1}^{\prime} e^{t / 2}+u_{2}^{\prime}\left(t e^{t / 2}+2 e^{t / 2}\right)=\frac{t^{1 / 2} e^{t / 2}}{2}
$$

Subtract the first equation to get:

$$
\begin{aligned}
2 u_{2}^{\prime} e^{t / 2} & =\frac{t^{1 / 2} e^{t / 2}}{2} \\
u_{2}^{\prime} & =\frac{t^{1 / 2}}{4} \\
u_{2} & =\frac{t^{3 / 2}}{6}
\end{aligned}
$$

Return to the first equation. Simplify and substitute:

$$
\begin{aligned}
u_{1}^{\prime} e^{t / 2}+u_{2}^{\prime} t e^{t / 2} & =0 \\
u_{1}^{\prime}+u_{2}^{\prime} t & =0 \\
u_{1}^{\prime}+\frac{t^{1 / 2}}{4} t & =0 \\
u_{1}^{\prime} & =-\frac{t^{3 / 2}}{4} \\
u_{1} & =-\frac{t^{5 / 2}}{10} \\
y & =u_{1} y_{1}+u_{2} y_{2}+A y_{1}+B y_{2} \\
& =-\frac{t^{5 / 2}}{10} e^{t / 2}+\frac{t^{3 / 2}}{6} t e^{t / 2}+A e^{t / 2}+B t e^{t / 2} \\
& =\frac{t^{5 / 2} e^{t / 2}}{15}+A e^{t / 2}+B t e^{t / 2}
\end{aligned}
$$

8. (15 points) Solve the differential equation $\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}=\frac{\partial u}{\partial t}$ for $0 \leq r \leq a$ with boundary condition $u(a, t)=0$ and initial conditions $u(r, 0)=g(r)$. Be sure to explain fully how you arrived at the possible values of the separation constant.

Answer: Write $u(r, t)=R(r) T(t)$, and the partial differential equation becomes $R^{\prime \prime} T+$ $R^{\prime} T / r=R T^{\prime}$. Divide by $R T$, and we have $R^{\prime \prime} / R+R^{\prime} /(r R)=T^{\prime} / T=-k$. We have two linked differential equations: $r R^{\prime \prime}+R^{\prime}+k r R=0$ and $T^{\prime}+k T=0$.

We begin with the equation for $R(r)$, which we write $r^{2} R^{\prime \prime}+r R^{\prime}+k r^{2} R=0$. The initial condition $u(a, t)=0$ means that $R(a)=0$. We have the usual three possibilities:
(i) $k=0$. The solution of $r R^{\prime \prime}+R^{\prime}=0$ is $R(r)=C+D \log r$. We require $R(0)$ to be defined, forcing $D=0$, and $R(a)=0$ forces $C=0$.
(ii) $k=-\alpha^{2}<0$ with $\alpha>0$. The solution of $r^{2} R^{\prime \prime}+r R^{\prime}-\alpha^{2} r^{2} R=0$ is $R(r)=$ $c_{1} I_{0}(\alpha r)+c_{2} K_{0}(\alpha r)$. We require $R(0)$ to be defined, forcing c_{2} to be 0 . We require $R(a)=0$, and because $I_{0}(r)>0$ if $r>0$, we have $c_{1}=0$.
(iii) $k=\alpha^{2}>0$ with $\alpha>0$. The solution of $r^{2} R^{\prime \prime}+r R^{\prime}+\alpha^{2} r^{2} R=0$ is $R(r)=$ $c_{1} J_{0}(\alpha r)+c_{2} Y_{0}(\alpha r)$. We require $R(0)$ to be defined, forcing c_{2} to be 0 . We require $R(a)=0$, forcing $J_{0}(\alpha a)=0$. We have a sequence of values, $0<\alpha_{1}<\alpha_{2}<\alpha_{3}<\cdots$, with $R_{n}\left(\alpha_{n} a\right)=0$, and $k=\alpha_{n}^{2}$.
We now consider $T^{\prime}+\alpha_{n}^{2} T=0$, with solution $T_{n}=C_{n} e^{-\alpha_{n}^{2} t}$. We have $u_{n}(r, t)=R_{n}(r) T_{n}(t)=$ $C_{n} e^{-\alpha_{n}^{2} t} J_{0}\left(\alpha_{n} r\right)$, and

$$
u(r, t)=\sum_{n=1}^{\infty} C_{n} e^{-\alpha_{n}^{2} t} J_{0}\left(\alpha_{n} r\right)
$$

Substitute $t=0$, and we have

$$
g(r)=\sum_{n=1}^{\infty} C_{n} J_{0}\left(\alpha_{n} r\right) .
$$

The orthogonality relation for Bessel functions tells us that

$$
C_{n}=\frac{\int_{0}^{a} J_{0}\left(\alpha_{n} r\right) g(r) r d r}{\int_{0}^{a} J_{0}^{2}\left(\alpha_{n} r\right) r d r}=\frac{2}{J_{1}^{2}\left(\alpha_{n} a\right)} \int_{0}^{a} J_{0}\left(\alpha_{n} r\right) g(r) r d r
$$

Grade	Number of people
90	1
85	1
76	1
73	1
70	1
64	1
60	2
48	1
47	1
45	1
35	1
31	1

Mean: 60.31
Standard deviation: 17.69

