Mathematics 310

Examination 1
Answers

1. (10 points) Let G be a group, and let x be an element of G. Finish the following definition: The order of x is ...
Answer: ... the smallest positive integer n so that $x^{n}=e$.
2. (10 points) State Lagrange's Theorem.

Answer: If G is a finite group, and H is a subgroup of G, then $o(H) \mid o(G)$.
3. (10 points) Let

$$
H=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right): a, b \in \mathbf{Z}, a b \neq 0\right\} .
$$

Is H a group with the binary operation of matrix multiplication? Be sure to explain your answer fully.
Answer: This is not a group. The inverse of the matrix $\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$ is $\left(\begin{array}{cc}1 / 2 & 0 \\ 0 & 1 / 2\end{array}\right)$, which is not in H.
4. (20 points) Suppose that G_{1} and G_{2} are groups, and $\phi: G_{1} \rightarrow G_{2}$ is a homomorphism.
(a) Recall that we defined $\phi\left(G_{1}\right)=\left\{\phi\left(g_{1}\right): g_{1} \in G_{1}\right\}$. Show that $\phi\left(G_{1}\right)$ is a subgroup of G_{2}.
(b) Suppose that H_{2} is a subgroup of G_{2}. Recall that we defined $\phi^{-1}\left(H_{2}\right)=\left\{g_{1} \in G_{1}\right.$: $\left.\phi\left(g_{1}\right) \in H_{2}\right\}$. Prove that $\phi^{-1}\left(H_{2}\right)$ is a subgroup of G_{1}.
Answer: (a) Pick $x, y \in \phi\left(G_{1}\right)$. Then we can write $x=\phi(a)$ and $y=\phi(b)$, with $a, b \in G_{1}$. Because G_{1} is closed under the group operation, we know that $a b \in G_{1}$. Because ϕ is a homomorphism, we know that $x y=\phi(a) \phi(b)=\phi(a b)$, and therefore $x y \in \phi\left(G_{1}\right)$. That shows that $\phi\left(G_{1}\right)$ is closed under the group operation.

Because $\phi\left(e_{1}\right)=e_{2}$, and $e_{1} \in G_{1}$, we know that $e_{2} \in \phi\left(G_{1}\right)$.
Finally, if $x \in \phi\left(G_{1}\right)$, we write $x=\phi(a)$ with $a \in G_{1}$. Then $a^{-1} \in G_{1}$, and $\phi\left(a^{-1}\right)=$ $\phi(a)^{-1}=x^{-1} \in \phi\left(G_{1}\right)$, showing that the inverse of each element in $\phi\left(G_{1}\right)$ is also in $\phi\left(G_{1}\right)$.
(b) Suppose that $a, b \in \phi^{-1}\left(H_{2}\right)$. Then $\phi(a), \phi(b) \in H_{2}$. Because H_{2} is a subgroup, we know that $\phi(a) \phi(b) \in H_{2}$. Because ϕ is a homomorphism, we know that $\phi(a) \phi(b)=\phi(a b)$. Because $\phi(a b) \in H_{2}$, we know that $a b \in \phi^{-1}\left(H_{2}\right)$, so $\phi^{-1}\left(H_{2}\right)$ is closed under the group operation. Because $\phi\left(e_{1}\right)=e_{2} \in H_{2}$, we know that $e_{1} \in \phi^{-1}\left(H_{2}\right)$. Finally, if $a \in \phi^{-1}\left(H_{2}\right)$, we have $\phi(a) \in H_{2}$. Because the inverse of each element in H_{2} is in H_{2}, we have $\phi(a)^{-1} \in H_{2}$. This is the same as $\phi\left(a^{-1}\right) \in H_{2}$, and that tells us that $a^{-1} \in \phi^{-1}\left(H_{2}\right)$, so the inverse of each element in $\phi^{-1}\left(H_{2}\right)$ is in $\phi^{-1}\left(H_{2}\right)$. This shows that $\phi^{-1}\left(H_{2}\right)$ is a subgroup.
5. (10 points) Suppose that $\phi: G_{1} \rightarrow G_{2}$ is a homomorphism of finite groups. Suppose that $a \in G_{1}$. Prove that $o(\phi(a)) \mid o(a)$.
Answer: Let $n=o(a)$. We know that $a^{n}=e_{1}$, and therefore $\phi\left(a^{n}\right)=e_{2}$. This says that $\phi(a)^{n}=e^{2}$. We proved in class that if $g^{k}=e$, then $o(g) \mid k$. Therefore, $o(\phi(a)) \mid n$.
6. (10 points) Remember that $\mathrm{GL}_{2}(\mathbf{R})$ is defined to be the set of invertible 2-by-2 matrices with real entries, and $\mathrm{SL}_{2}(\mathbf{R})$ is the subgroup of $\mathrm{GL}_{2}(\mathbf{R})$ containing matrices with determinant

1. (You may assume that without proof that both $\mathrm{GL}_{2}(\mathbf{R})$ and $\mathrm{SL}_{2}(\mathbf{R})$ are groups.) Prove that $\mathrm{SL}_{2}(\mathbf{R})$ is a normal subgroup of $\mathrm{GL}_{2}(\mathbf{R})$.
Answer: Suppose that $A \in \mathrm{SL}_{2}(\mathbf{R})$ and $B \in \mathrm{GL}_{2}(\mathbf{R})$. We must show that $B A B^{-1} \in \mathrm{SL}_{2}(\mathbf{R})$. Because $\operatorname{det}\left(B A B^{-1}\right)=\operatorname{det}(B) \operatorname{det}(A) \operatorname{det}\left(B^{-1}\right)=\operatorname{det}(B) \cdot 1 \cdot \operatorname{det}(B)^{-1}=1$, we know that $B A B^{-1}$ has determinant 1 and hence is in $\mathrm{SL}_{2}(\mathbf{R})$.
2. (30 points) Let G be a finite group containing n elements.

Prove or give a counterexample to each of the following statements. Providing a counterexample means that you will tell me a specific group G and a specific explanation of why the group G violates the given statement.
(a) Every element in G except for the identity has order n.
(b) There must be some element in G which has order n.
(c) If G is a finite abelian group containing n elements, then there must be some element in G which has order n.
Answer: (a) This statement is false. The easiest counterexample is given by $\mathbf{Z} / 4 \mathbf{Z}$, which has 4 elements, and the element 2 has order 2 , not order 4 .
(b) This statement is false. One counterexample is to let $G=S_{3}$, which has no elements of order 6 . In S_{3}, there is the identity, with order 1 , three elements of order 2, and two elements of order 3. There cannot be an element of order 6 , or else S_{3} would be cyclic, and hence abelian.
(c) This statement is false. One counterexample is given by the group $\mathbf{Z} / 8 \mathbf{Z}^{\times}=U_{8}=$ $\{1,3,5,7\}$, with group operation multiplication modulo 8 . Each of the three non-identity elements has order 2, but the group has order order 4.

Grade	Number of people
70	1
69	1
65	2
62	2
45	2
37	1

Mean: 57.78
Standard deviation: 11.42

