Examination 2
Answers

1. (20 points) Find the order of each of these elements of S_{9}, and identify each permutation as odd or even:
(a) $\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 8 & 6 & 7 & 4 & 3 & 2 & 5 & 1 & 9\end{array}\right)$
(b) $\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 6 & 7 & 8 & 5 & 4 & 9 & 1\end{array}\right)$

Answer: (a) We have $\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 8 & 6 & 7 & 4 & 3 & 2 & 5 & 1 & 9\end{array}\right)=(18)(26)(375)=(18)(26)(35)(37)$. The cycle decomposition shows that the permutation has order 6, and the transposition decomposition shows that the permutation is even.
(b) We have $\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 6 & 7 & 8 & 5 & 4 & 9 & 1\end{array}\right)=(1236589)(47)=(19)(18)(15)(16)(13)(12)(47)$. The cycle decomposition shows that the permutation has order 14, and the transposition decomposition shows that the permutation is odd.
2. (20 points) Suppose that G_{1} and G_{2} are groups, and $\varphi: G_{1} \rightarrow G_{2}$ is a group homomorphism. Prove or give a counterexample to each of these two statements:
(i) If G_{2} is abelian and φ is surjective, then G_{1} is abelian.
(ii) If G_{1} is abelian and φ is injective, then G_{2} is abelian.

A counterexample requires you to find specific groups G_{1} and G_{2}, as well as the homomorphism φ.
Answer: (i) This statement is false. One example is to take $G_{1}=\mathrm{GL}_{2}(\mathbf{R})$, the group of invertible 2×2 matrices with real entries with the group operation matrix multiplication. We know that $\mathrm{GL}_{2}(\mathbf{R})$ is not abelian.

Let $G_{2}=\mathbf{R}^{\times}$, the set of non-zero real numbers, with group operation multiplication, and we know that \mathbf{R}^{\times}is abelian.

Let $\varphi(A)=\operatorname{det}(A)$. We know that the determinant function is a homomorphism, and the equation $\operatorname{det}\left(\begin{array}{ll}x & 0 \\ 0 & 1\end{array}\right)=x$ shows that any $x \in \mathbf{R}^{\times}$is the determinant of some matrix, proving that the homomorphism is surjective.
(b) This statement is also false. One example is the homomorphism from $\mathbf{Z} / 3 \mathbf{Z}$ to S_{3} that came from a recent homework assignment. Let $\varphi(0)=e, \varphi(1)=(123)$, and $\varphi(2)=(132)$. This is an injective homomorphism and $\mathbf{Z} / 3 \mathbf{Z}$ is abelian, but S_{3} is not abelian.
3. (15 points) Find a non-trivial group homomorphism from S_{3} to $\mathbf{Z} / 6 \mathbf{Z}$, or show that no such homomorphism exists.
Answer: The homomorphism can't be an isomorphism, because S_{3} is not abelian and $\mathbf{Z} / 6 \mathbf{Z}$ is abelian. That means that there must be a kernel, and the kernel must be a normal subgroup. The homomorphism that results is $\varphi(e)=\varphi(123)=\varphi(132)=0$ and $\varphi(12)=\varphi(13)=\varphi(23)=3$.
4. (15 points) Find a non-trivial group homomorphism from $\mathbf{Z} / 6 \mathbf{Z}$ to S_{3}, or show that no such homomorphism exists.
Answer: There are five possibilities here, though again the homomorphism cannot be a bijection. The possibilities are determined by $\varphi(1)$, and they are:

$0 \rightarrow e$	$0 \rightarrow e$	$0 \rightarrow e$	$0 \rightarrow e$		$0 \rightarrow e$
$1 \rightarrow(12)$	$1 \rightarrow$ (13)	$1 \rightarrow(23)$	$1 \rightarrow$ (123)		$1 \rightarrow$ (132)
$2 \rightarrow e$	$2 \rightarrow e$	$2 \rightarrow e$	$2 \rightarrow$ (132)		$2 \rightarrow(123)$
$\varphi_{1}: 3 \rightarrow(12)$	$\varphi_{2}: 3 \rightarrow(13)$	$\varphi_{3}: 3 \rightarrow(23)$	$\varphi_{4}: 3 \rightarrow e$		$3 \rightarrow e$
$4 \rightarrow e$	$4 \rightarrow e$	$4 \rightarrow e$	$4 \rightarrow$ (123)		$4 \rightarrow$ (132)
$5 \rightarrow(12)$	$5 \rightarrow(13)$	$5 \rightarrow(23)$	$5 \rightarrow$ (132)		$5 \rightarrow(123)$

5. (15 points) Find a non-trivial ring homomorphism from $\mathbf{Z} / 2 \mathbf{Z}$ to $\mathbf{Z} / 4 \mathbf{Z}$, or show that no such homomorphism exists.
Answer: We must have $\varphi(1)=1$ in order to satisfy our definition of a ring homomorphism. But then $\varphi(1+1)=1+1=2$, while $\varphi(1+1)=\varphi(0)=0$. This is a contradiction, so there is no ring homomorphism.
6. (15 points) Find a non-trivial ring homomorphism from $\mathbf{Z} / 8 \mathbf{Z}$ to $\mathbf{Z} / 4 \mathbf{Z}$, or show that no such homomorphism exists.
Answer: Again, we must have $\varphi(1)=1$, forcing $\varphi(2)=2, \varphi(3)=3, \varphi(4)=0, \varphi(5)=1$, $\varphi(6)=2$, and $\varphi(7)=3$. This is a homomorphism, and the kernel is $\{0,4\}$, which is an ideal of $\mathbf{Z} / 8 \mathbf{Z}$.

Grade	Number of people
83	1
76	1
68	2
65	1
47	1
40	1
38	1

Mean: 60.62
Standard deviation: 15.76

