Mathematics 310 Examination 3 December 7, 2011 Answers

1. (20 points) Let $\mathbf{F}_2 = \mathbf{Z}/2\mathbf{Z}$.

(a) Show that the polynomial $p(x) = x^2 + x + 1$ is irreducible in $\mathbf{F}_2[x]$.

(b) How many elements are in the field $E = \mathbf{F}_2[x]/(p(x))$?

(c) Write out the addition and multiplication tables for E.

Answer: (a) We compute p(0) = 1 and p(1) = 1. Therefore, p(x) has no linear factor, so it must be irreducible.

(b) We have $[E: \mathbf{F}_2] = \deg(p) = 2$, and so the number of elements in $E = 2^2 = 4$.

(c) Let $E = \{0, 1, x, x + 1\}$. The addition and multiplication tables are:

+	0	1	x	x + 1	×	0	1	x	x + 1
0	0	1	x	x+1	0	0	0	0	0
1	1	0	x + 1	x	1	0	1	x	x + 1
x	x	x + 1	0	1	x	0	x	x + 1	1
x + 1	x+1	x	1	0	x + 1	0	x + 1	1	x

2. (20 points) Suppose that $f(x), g(x) \in \mathbb{Z}[x]$, with $\deg(f) = \deg(g) = 10$. Suppose as well that $f(0) = g(0), f(1) = g(1), \ldots, f(10) = g(10)$. Prove that f and g are the same polynomial.

Answer: Let h(x) = f(x) - g(x). We know that either h = 0 or $\deg(h) \le 10$, and we also know that $h(0) = h(1) = h(2) = \cdots = h(10) = 0$. A polynomial of degree 10 cannot have 11 roots, so we must conclude that h is the 0 polynomial, which says that f and g are the same polynomial.

3. (20 points) Let F be a field. Find all ideals of the ring $F \oplus F$ other than $F \oplus F$ and $\{(0,0)\}$.

Answer: We know from a homework problem that $\{(f,0) : f \in F\}$ and $\{(0,f) : f \in F\}$ are ideals. We now show that those are the only ideals. Suppose that I is an ideal which contains an element (a,b), with $a \neq 0$ and $b \neq 0$. Because $a \neq 0$, we know that a^{-1} exists, so multiplication of (a,b) by $(a^{-1},0)$ shows that $(1,0) \in I$. Similarly, because $b \neq 0$, we can multiply by $(0,b^{-1})$ to see that $(0,1) \in I$. But if $(1,0) \in I$, then $(f_1,0) \in I$ for every $f_1 \in F$. Similarly, because $(0,1) \in I$, we see that $(0,f_2) \in I$ for every $f_2 \in F$. Because I is closed under addition, we now conclude that $(f_1,f_2) \in I$, so that $I = F \oplus F$.

4. (20 points) Suppose that R_1 and R_2 are groups, and $\varphi : R_1 \to R_2$ is a ring homomorphism. Prove or give a counterexample to each of these two statements:

(a) If R_2 is an integral domain and φ is surjective, then R_1 is an integral domain.

(b) If R_2 is an integral domain and φ is injective, then R_1 is an integral domain.

A counterexample requires you to find specific rings R_1 and R_2 , as well as the homomorphism φ .

Answer: (a) This statement is false. One example is the homomorphism $\varphi : \mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$ given by $\varphi(1) = \varphi(3) = 1$ and $\varphi(0) = \varphi(2) = 0$. This is surjective, $\mathbb{Z}/2\mathbb{Z}$ is an integral domain, but $\mathbb{Z}/4\mathbb{Z}$ is not an integral domain.

(b) This statement is *true*. Suppose that $a, b \in R_1$, and ab = 0. We need to prove that a = 0 or b = 0. We know that $\varphi(ab) = 0$, so $\varphi(a)\varphi(b) = 0$. Because R_2 is an integral domain, we know that $\varphi(a) = 0$ or $\varphi(b) = 0$. Because φ is an injection, we now can assert that either a = 0 or b = 0.

5. (20 points) Suppose that $f(x), g(x) \in \mathbf{Q}[x]$ are polynomials, and for some complex number $\alpha, f(\alpha) = g(\alpha) = 0$. Prove that f and g are not relatively prime polynomials.

Answer: Suppose that f and g are relatively prime. We can then find polynomials $a(x), b(x) \in \mathbf{Q}[x]$ so that a(x)f(x) + b(x)g(x) = 1. Now substitute $x = \alpha$, and we get $a(\alpha) \cdot 0 + b(\alpha) \cdot 0 = 1$. This is a contradiction.

Grade	Number of people
70	1
65	2
50	2
30	1
25	1
15	1

Mean: 46.25 Standard deviation: 19.32