Mathematics 310

Examination 3
December 7, 2011
Answers

1. (20 points) Let $\mathbf{F}_{2}=\mathbf{Z} / 2 \mathbf{Z}$.
(a) Show that the polynomial $p(x)=x^{2}+x+1$ is irreducible in $\mathbf{F}_{2}[x]$.
(b) How many elements are in the field $E=\mathbf{F}_{2}[x] /(p(x))$?
(c) Write out the addition and multiplication tables for E.

Answer: (a) We compute $p(0)=1$ and $p(1)=1$. Therefore, $p(x)$ has no linear factor, so it must be irreducible.
(b) We have $\left[E: \mathbf{F}_{2}\right]=\operatorname{deg}(p)=2$, and so the number of elements in $E=2^{2}=4$.
(c) Let $E=\{0,1, x, x+1\}$. The addition and multiplication tables are:

+	0	1	x	$x+1$
0	0	1	x	$x+1$
1	1	0	$x+1$	x
x	x	$x+1$	0	1
$x+1$	$x+1$	x	1	0

\times	0	1	x	$x+1$
0	0	0	0	0
1	0	1	x	$x+1$
x	0	x	$x+1$	1
$x+1$	0	$x+1$	1	x

2. (20 points) Suppose that $f(x), g(x) \in \mathbf{Z}[x]$, with $\operatorname{deg}(f)=\operatorname{deg}(g)=10$. Suppose as well that $f(0)=g(0), f(1)=g(1), \ldots, f(10)=g(10)$. Prove that f and g are the same polynomial.
Answer: Let $h(x)=f(x)-g(x)$. We know that either $h=0$ or $\operatorname{deg}(h) \leq 10$, and we also know that $h(0)=h(1)=h(2)=\cdots=h(10)=0$. A polynomial of degree 10 cannot have 11 roots, so we must conclude that h is the 0 polynomial, which says that f and g are the same polynomial.
3. (20 points) Let F be a field. Find all ideals of the ring $F \oplus F$ other than $F \oplus F$ and $\{(0,0)\}$.
Answer: We know from a homework problem that $\{(f, 0): f \in F\}$ and $\{(0, f): f \in F\}$ are ideals. We now show that those are the only ideals. Suppose that I is an ideal which contains an element (a, b), with $a \neq 0$ and $b \neq 0$. Because $a \neq 0$, we know that a^{-1} exists, so multiplication of (a, b) by $\left(a^{-1}, 0\right)$ shows that $(1,0) \in I$. Similarly, because $b \neq 0$, we can multiply by $\left(0, b^{-1}\right)$ to see that $(0,1) \in I$. But if $(1,0) \in I$, then $\left(f_{1}, 0\right) \in I$ for every $f_{1} \in F$. Similarly, because $(0,1) \in I$, we see that $\left(0, f_{2}\right) \in I$ for every $f_{2} \in F$. Because I is closed under addition, we now conclude that $\left(f_{1}, f_{2}\right) \in I$, so that $I=F \oplus F$.
4. (20 points) Suppose that R_{1} and R_{2} are groups, and $\varphi: R_{1} \rightarrow R_{2}$ is a ring homomorphism. Prove or give a counterexample to each of these two statements:
(a) If R_{2} is an integral domain and φ is surjective, then R_{1} is an integral domain.
(b) If R_{2} is an integral domain and φ is injective, then R_{1} is an integral domain.

A counterexample requires you to find specific rings R_{1} and R_{2}, as well as the homomorphism φ.
Answer: (a) This statement is false. One example is the homomorphism $\varphi: \mathbf{Z} / 4 \mathbf{Z} \rightarrow \mathbf{Z} / 2 \mathbf{Z}$ given by $\varphi(1)=\varphi(3)=1$ and $\varphi(0)=\varphi(2)=0$. This is surjective, $\mathbf{Z} / 2 \mathbf{Z}$ is an integral domain, but $\mathbf{Z} / 4 \mathbf{Z}$ is not an integral domain.
(b) This statement is true. Suppose that $a, b \in R_{1}$, and $a b=0$. We need to prove that $a=0$ or $b=0$. We know that $\varphi(a b)=0$, so $\varphi(a) \varphi(b)=0$. Because R_{2} is an integral domain, we know that $\varphi(a)=0$ or $\varphi(b)=0$. Because φ is an injection, we now can assert that either $a=0$ or $b=0$.
5. (20 points) Suppose that $f(x), g(x) \in \mathbf{Q}[x]$ are polynomials, and for some complex number $\alpha, f(\alpha)=g(\alpha)=0$. Prove that f and g are not relatively prime polynomials.
Answer: Suppose that f and g are relatively prime. We can then find polynomials $a(x), b(x) \in$ $\mathbf{Q}[x]$ so that $a(x) f(x)+b(x) g(x)=1$. Now substitute $x=\alpha$, and we get $a(\alpha) \cdot 0+b(\alpha) \cdot 0=1$. This is a contradiction.

Grade	Number of people
70	1
65	2
50	2
30	1
25	1
15	1

Mean: 46.25
Standard deviation: 19.32

