MT310.01: Introduction to Abstract Algebra
Final Examination
Answers

1. (10 points) The following sets are all commutative rings: $\mathbf{Z}, \mathbf{Q}, \mathbf{R}, \mathbf{C}, \mathbf{Z} / 2 \mathbf{Z}, \mathbf{Z} / 3 \mathbf{Z}, \mathbf{Z} / 4 \mathbf{Z}$, $\mathbf{Z} / 5 \mathbf{Z}$, and $\mathbf{Z} / 6 \mathbf{Z}$. Which of these rings are integral domains? Which are fields?

You do not need to justify your answers to this question.
Answer: The integral domains are $\mathbf{Z}, \mathbf{Q}, \mathbf{R}, \mathbf{C}, \mathbf{Z} / 2 \mathbf{Z}, \mathbf{Z} / 3 \mathbf{Z}$, and $\mathbf{Z} / 5 \mathbf{Z}$. The fields are \mathbf{Q}, $\mathbf{R}, \mathbf{C}, \mathbf{Z} / 2 \mathbf{Z}, \mathbf{Z} / 3 \mathbf{Z}$, and $\mathbf{Z} / 5 \mathbf{Z}$.
2. (10 points) (a) State Eisenstein's Criterion.
(b) Let n be a positive integer, and let k be an integer which is bigger than 1 . Prove that $\sqrt[k]{25 n+15}$ is irrational.
Answer: (a) If $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$ is a polynomial in $\mathbf{Z}[x]$, and
(1) $p \nmid a_{n}$.
(2) $p\left|a_{n-1}, \ldots, p\right| a_{1}, p \mid a_{0}$.
(3) $p^{2} \nmid a_{0}$.

Then $f(x)$ is irreducible in $\mathbf{Q}[x]$.
(b) Consider the polynomial $x^{k}-(25 n+15)$, with k and n as above. Eisenstein's Criterion says that this polynomial is irreducible in $\mathbf{Q}[x]$, because
(1) $5 \nmid 1$.
(2) $5 \mid 25 n+15$.
(3) $25 \nmid 25 n+15$.

Because the polynomial is irreducible in $\mathbf{Q}[x]$, we know that it cannot have a factor of the form $x-\frac{p}{q}$. Therefore, the roots of the polynomial are irrational, so $\sqrt[k]{25 n+15}$ is irrational.
3. (10 points) Suppose that F is a field, and $f(x)$ is an element of $F[x]$. Prove or give a counterexample to each of the following statements:
(a) If $f(x)$ is irreducible, then $f\left(x^{2}\right)$ is irreducible.
(b) If $f\left(x^{2}\right)$ is irreducible, then $f(x)$ is irreducible.

A counterexample means finding a specific field F and specific polynomial $f(x)$ that makes the statement false.
Answer: (a) This statement is false. One simple counterexample is given by $f(x)=x-1$, which is irreducible, while $f\left(x^{2}\right)=x^{2}-1=(x+1)(x-1)$.
(b) This statement is true. Suppose that $f(x)$ is reducible, so that $f(x)=g(x) h(x)$, with $\operatorname{deg}(g(x)) \geq 1$ and $\operatorname{deg}(h(x)) \geq 1$. We then have $f\left(x^{2}\right)=g\left(x^{2}\right) h\left(x^{2}\right)$, with $\operatorname{deg}\left(g\left(x^{2}\right)\right) \geq 2$ and $\operatorname{deg}\left(h\left(x^{2}\right)\right) \geq 2$. This shows that $f\left(x^{2}\right)$ is reducible.
4. (10 points) Suppose that $\phi: G_{1} \rightarrow G_{2}$ is a homomorphism of groups. Prove or give a counterexample:
(a) If $H_{1} \triangleleft G_{1}$, then $\phi\left(H_{1}\right) \triangleleft G_{2}$
(b) If $H_{2} \triangleleft G_{2}$, then $\phi^{-1}\left(H_{2}\right) \triangleleft G_{1}$.

As usual, $\phi\left(H_{1}\right)$ is defined with the equation

$$
\phi\left(H_{1}\right)=\left\{\phi\left(h_{1}\right): h_{1} \in H_{1}\right\}
$$

and $\phi^{-1}\left(H_{2}\right)$ is defined with the equation

$$
\phi^{-1}\left(H_{2}\right)=\left\{g_{1} \in G_{1}: \phi\left(g_{1}\right) \in H_{2}\right\} .
$$

Finding a counterexample means finding specific groups G_{1} and G_{2}, a specific homomorphism ϕ, and a specific normal subgroup which makes the statement false.

Be sure not to assume in your proofs that ϕ is either injective or surjective.
Answer: (a) This statement is false. The easiest way to find a counterexample is to let G_{1} be an abelian group, so that every subgroup is normal, and to let G_{2} be S_{3}, because we know from homework problems that $\{e,(12)\}$ is a subgroup of S_{3} which is not normal.

One possibility is to let $G_{1}=\mathbf{Z}$, and define $\phi(n)=(12)^{n}$. In other words,

$$
\phi(n)= \begin{cases}(12) & n \text { is odd } \\ e & n \text { is even }\end{cases}
$$

Now, let $H_{1}=3 \mathbf{Z}$, the subgroup of all multiples of 3 . We know that $3 \mathbf{Z} \triangleleft \mathbf{Z}$, because \mathbf{Z} is abelian, and $\phi\left(H_{1}\right)=\{e,(12)\}$, which is not a normal subgroup of S_{3}.
(b) This statement is true. Let $h_{1} \in \phi^{-1}\left(H_{2}\right)$, and $g_{1} \in G_{1}$. We need to show that $g_{1} h_{1} g_{1}^{-1} \in \phi^{-1}\left(H_{2}\right)$.

Because $h_{1} \in \phi^{-1}\left(H_{2}\right)$, we have $\phi\left(h_{1}\right) \in H_{2}$, and therefore if g_{2} is any element of G_{2}, we know that $g_{2} \phi\left(h_{1}\right) g_{2}^{-1} \in H_{2}$. In particular, if $g_{2}=\phi\left(g_{1}\right)$, we have $\phi\left(g_{1} h_{1} g_{1}^{-1}\right)=\phi\left(g_{1}\right) \phi\left(h_{1}\right) \phi\left(g_{1}\right)^{-1} \in$ H_{2}. This shows that $g_{1} h_{1} g_{1}^{-1} \in H_{2}$.
5. (10 points) Suppose that $\phi: R_{1} \rightarrow R_{2}$ is a homomorphism of rings. Prove or give a counterexample:
(a) If I_{1} is an ideal of R_{1}, then $\phi\left(I_{1}\right)$ is an ideal in R_{2}
(b) If I_{2} is an ideal of R_{2}, then $\phi^{-1}\left(I_{2}\right)$ is an ideal in R_{1}.

Finding a counterexample means finding specific rings R_{1} and R_{2}, a specific homomorphism ϕ, and a specific ideal which makes the statement false.

Be sure not to assume in your proofs that ϕ is either injective or surjective.
Answer: (a) This statement is false. A simple counterexample is to take $R_{1}=\mathbf{Z}$, and $R_{2}=\mathbf{Q}$, with the homomorphism $\phi(n)=n$. Let $I_{1}=2 \mathbf{Z}$, the ideal of even integers. Then $\phi\left(I_{1}\right)$ is also the set of even integers, but inside the ring \mathbf{Q}, the set of even integers is not an ideal. For example, 2 is an even integer, and $\frac{1}{2} \in \mathbf{Q}$, and their product is not an even integer.
(b) This statement is true. Suppose that $i, j \in \phi^{-1}\left(I_{2}\right)$. Then we know that $\phi(i), \phi(j) \in I_{2}$, and because I_{2} is an ideal, we know that $\phi(i)+\phi(j) \in I_{2}$. That shows that $\phi(i+j) \in I_{2}$, or $i+j \in \phi^{-1}\left(I_{2}\right)$.

Now let $r \in R_{1}$. We need to show that ir and ri$\in^{-1}\left(I_{2}\right)$. We know that $\phi(i) \in I_{2}$, and therefore $r_{2} \phi(i)$ and $\phi(i) r_{2} \in I_{2}$ for any $r_{2} \in R_{2}$, because I_{2} is an ideal. In particular, we let $r_{2}=\phi(r)$, and then $\phi(r) \phi(i)$ and $\phi(i) \phi(r) \in I_{2}$. That shows that $\phi(r i)$ and $\phi(i r) \in I_{2}$, or $r i, i r \in \phi^{-1}\left(I_{2}\right)$.
6. (5 points) Suppose that R is a commutative ring, and the only ideals of R are $\{0\}$ and R. Prove that R is a field.

Answer: We need to show that any non-zero element of R has an inverse in R. Let r be such an element. The ideal (r) cannot be the zero ideal, because $r \neq 0$. Therefore $(r)=R$. Because $1 \in R$, we know that there is some element $s \in R$ so that $r s=1$. This shows that r has an inverse.
7. (10 points) Let

$$
\sigma=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
4 & 1 & 5 & 2 & 3 & 7 & 6 & 9 & 8
\end{array}\right) \quad \tau=\left(\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
6 & 8 & 9 & 5 & 7 & 2 & 1 & 3 & 4
\end{array}\right)
$$

(a) Write $\sigma \circ \tau$ in cycle notation.
(b) What is the order of σ ?
(c) What is the order of τ ?
(d) Is σ even or odd?
(e) Is τ even or odd?

Be sure to justify your answers.
Answer: We have $\sigma=(142)(35)(67)(89)$ and $\tau=(162839457)$.
(a) Therefore, $\sigma \circ \tau=(1743856)(29)$.
(b) $o(\sigma)=6$.
(c) $o(\tau)=9$.
(d) $\sigma=(142)(35)(67)(89)=(12)(14)(35)(67)(89)$, the product of an odd number of transpositions, and therefore σ is odd.
(e) $\tau=(17)(15)(14)(19)(13)(18)(12)(16)$, the product of an even number of transpositions, and therefore τ is even.
8. (15 points) Remember that A_{4} consists of the 12 elements in S_{4} which are even permutations. Let $H=\{e,(12)(34),(13)(24),(14)(23)\}$. You may assume without proof that H is a subgroup of A_{4}.
(a) Show that H is group isomorphic to $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$.
(b) List the left and right cosets of H in A_{4}.
(c) Is H a normal subgroup of A_{4} ?

Answer: Here are the group operation tables for both H and $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$:

| \cdot | e | $(12)(34)$ | $(13)(24)$ | $(14)(23)$ | | + | $(0,0)$ | $(0,1)$ | $(1,0)$ | $(1,1)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| e | e | $(12)(34)$ | $(13)(24)$ | $(14)(23)$ | | $(0,0)$ | $(0,0)$ | $(0,1)$ | $(1,0)$ | $(1,1)$ |
| $(12)(34)$ | $(12)(34)$ | e | $(14)(23)$ | $(13)(24)$ | | $(0,1)$ | $(0,1)$ | $(0,0)$ | $(1,1)$ | $(1,0)$ |
| $(13)(24)$ | $(13)(24)$ | $(14)(23)$ | e | $(12)(34)$ | | $(1,0)$ | $(1,0)$ | $(1,1)$ | $(0,0)$ | $(0,1)$ |
| $(14)(23)$ | $(14)(23)$ | $(13)(24)$ | $(12)(34)$ | e | | $(1,1)$ | $(1,1)$ | $(1,0)$ | $(0,1)$ | $(0,0)$ |

(a) You can see from the group operation tables that any bijection between A_{4} and $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$ is a group isomorphism.
(b) We have

$$
\begin{aligned}
H & =\{e,(12)(34),(13)(24),(14)(23)\} & H & =\{e,(12)(34),(13)(24),(14)(23)\} \\
H(123) & =\{(123),(243),(142),(134)\} & (123) H & =\{(123),(134),(324),(142)\} \\
H(132) & =\{(132),(143),(342),(124)\} & (132) H & =\{(132),(234),(124),(143)\}
\end{aligned}
$$

(c) A bit of inspection shows that left and right cosets are equal (remember that, for example, $(342)=(234))$. Therefore, H is a normal subgroup of A_{4}.
9. (10 points) Suppose that G is an abelian group with 6 elements. Show that G is isomorphic to $\mathbf{Z} / 6 \mathbf{Z}$.
Answer: By Cauchy's Theorem, G contains an element a with $o(a)=2$ and an element b with $o(b)=3$. Because a and b commute, we can cite a homework problem to conclude
that $o(a b)=6$. Let $c=a b$, and we know that G is a cyclic group generated by c, so $G=\left\{e, c, c^{2}, c^{3}, c^{4}, c^{5}\right\}$. Now the function $\phi: G \rightarrow \mathbf{Z} / 6 \mathbf{Z}$ given by $\phi\left(c^{n}\right)=[n]_{6}$ is an isomorphism.
10. (10 points) Suppose that G is a nonabelian group with 6 elements. Show that G is isomorphic to S_{3}.
Answer: By Cauchy's Theorem, G contains an element a with $o(a)=2$ and an element b with $o(b)=3$. We can list the 6 elements of G as $\left\{e, b, b^{2}, a, a b, a b^{2}\right\}$.

We need to compute $b a$. We cannot have $b a=e$, or else $b=a^{-1}$. We cannot have $b a=b$, or else $a=e$. We cannot have $b a=b^{2}$, or else $a=b$. We cannot have $b a=a$, or else $b=e$. If $b a=a b$, then a and b commute, $o(a b)=6, G$ is cyclic, and therefore G is abelian.

The only possibility is that $b a=a b^{2}$. We can now compute for example that $b^{2} a=b(b a)=$ $b\left(a b^{2}\right)=(b a) b^{2}=a b^{4}=a b$. Similar computations allow us to write out the complete group operation table for G :

\cdot	e	b	b^{2}	a	$a b$	$a b^{2}$
e	e	b	b^{2}	a	$a b$	$a b^{2}$
b	b	b^{2}	e	$a b^{2}$	a	$a b$
b^{2}	b^{2}	e	b	$a b$	$a b^{2}$	a
a	a	$a b$	$a b^{2}$	e	b	b^{2}
$a b$	$a b$	$a b^{2}$	a	b^{2}	e	b
$a b^{2}$	$a b^{2}$	a	$a b$	b	b^{2}	e

Here is the operation table for S_{3} :

\cdot	e	(123)	(132)	(12)	(23)	(13)
e	e	(123)	(132)	(12)	(23)	(13)
(123)	(123)	(132)	e	(13)	(12)	(23)
(132)	(132)	e	(123)	(23)	(13)	(12)
(12)	(12)	(23)	(13)	e	(123)	(132)
(23)	(23)	(13)	(12)	(132)	e	(123)
(13)	(13)	(12)	(23)	(123)	(132)	e

Now inspection shows that these are the same group operation tables with the mapping $\phi(e)=e, \phi(b)=(123), \phi\left(b^{2}\right)=(132), \phi(a)=(12), \phi(a b)=(23)$, and $\phi\left(a b^{2}\right)=(13)$.

Grade	Number of
70	1
52	1
51	1
48	1
38	1
37	1
36	1
24	1

Mean: 44.50
Standard deviation: 13.00

