
MT310.01: Introduction to Abstract Algebra
Final Examination

Answers

1. (10 points) The following sets are all commutative rings: Z, Q, R, C, Z/2Z, Z/3Z, Z/4Z,
Z/5Z, and Z/6Z. Which of these rings are integral domains? Which are fields?

You do not need to justify your answers to this question.
Answer : The integral domains are Z, Q, R, C, Z/2Z, Z/3Z, and Z/5Z. The fields are Q,
R, C, Z/2Z, Z/3Z, and Z/5Z.

2. (10 points) (a) State Eisenstein’s Criterion.
(b) Let n be a positive integer, and let k be an integer which is bigger than 1. Prove that

k
√

25n+ 15 is irrational.
Answer : (a) If f(x) = anx

n + · · ·+ a1x+ a0 is a polynomial in Z[x], and
(1) p - an.
(2) p|an−1, . . ., p|a1, p|a0.
(3) p2 - a0.

Then f(x) is irreducible in Q[x].
(b) Consider the polynomial xk − (25n+ 15), with k and n as above. Eisenstein’s Criterion

says that this polynomial is irreducible in Q[x], because
(1) 5 - 1.
(2) 5|25n+ 15.
(3) 25 - 25n+ 15.

Because the polynomial is irreducible in Q[x], we know that it cannot have a factor of the
form x− p

q
. Therefore, the roots of the polynomial are irrational, so k

√
25n+ 15 is irrational.

3. (10 points) Suppose that F is a field, and f(x) is an element of F [x]. Prove or give a
counterexample to each of the following statements:

(a) If f(x) is irreducible, then f(x2) is irreducible.
(b) If f(x2) is irreducible, then f(x) is irreducible.

A counterexample means finding a specific field F and specific polynomial f(x) that makes
the statement false.
Answer : (a) This statement is false. One simple counterexample is given by f(x) = x− 1,
which is irreducible, while f(x2) = x2 − 1 = (x+ 1)(x− 1).

(b) This statement is true. Suppose that f(x) is reducible, so that f(x) = g(x)h(x), with
deg(g(x)) ≥ 1 and deg(h(x)) ≥ 1. We then have f(x2) = g(x2)h(x2), with deg(g(x2)) ≥ 2
and deg(h(x2)) ≥ 2. This shows that f(x2) is reducible.

4. (10 points) Suppose that φ : G1 → G2 is a homomorphism of groups. Prove or give a
counterexample:

(a) If H1 / G1, then φ(H1) / G2
(b) If H2 / G2, then φ−1(H2) / G1.

As usual, φ(H1) is defined with the equation
φ(H1) = {φ(h1) : h1 ∈ H1}

and φ−1(H2) is defined with the equation
φ−1(H2) = {g1 ∈ G1 : φ(g1) ∈ H2}.
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Finding a counterexample means finding specific groups G1 and G2, a specific homomorphism
φ, and a specific normal subgroup which makes the statement false.

Be sure not to assume in your proofs that φ is either injective or surjective.
Answer : (a) This statement is false. The easiest way to find a counterexample is to let G1 be
an abelian group, so that every subgroup is normal, and to let G2 be S3, because we know
from homework problems that {e, (12)} is a subgroup of S3 which is not normal.

One possibility is to let G1 = Z, and define φ(n) = (12)n. In other words,

φ(n) =

(12) n is odd
e n is even

Now, let H1 = 3Z, the subgroup of all multiples of 3. We know that 3Z / Z, because Z is
abelian, and φ(H1) = {e, (12)}, which is not a normal subgroup of S3.

(b) This statement is true. Let h1 ∈ φ−1(H2), and g1 ∈ G1. We need to show that
g1h1g

−1
1 ∈ φ−1(H2).

Because h1 ∈ φ−1(H2), we have φ(h1) ∈ H2, and therefore if g2 is any element ofG2, we know
that g2φ(h1)g−1

2 ∈ H2. In particular, if g2 = φ(g1), we have φ(g1h1g
−1
1 ) = φ(g1)φ(h1)φ(g1)−1 ∈

H2. This shows that g1h1g
−1
1 ∈ H2.

5. (10 points) Suppose that φ : R1 → R2 is a homomorphism of rings. Prove or give a
counterexample:

(a) If I1 is an ideal of R1, then φ(I1) is an ideal in R2
(b) If I2 is an ideal of R2, then φ−1(I2) is an ideal in R1.

Finding a counterexample means finding specific rings R1 and R2, a specific homomorphism
φ, and a specific ideal which makes the statement false.

Be sure not to assume in your proofs that φ is either injective or surjective.
Answer : (a) This statement is false. A simple counterexample is to take R1 = Z, and R2 = Q,
with the homomorphism φ(n) = n. Let I1 = 2Z, the ideal of even integers. Then φ(I1) is
also the set of even integers, but inside the ring Q, the set of even integers is not an ideal.
For example, 2 is an even integer, and 1

2 ∈ Q, and their product is not an even integer.
(b) This statement is true. Suppose that i, j ∈ φ−1(I2). Then we know that φ(i), φ(j) ∈ I2,

and because I2 is an ideal, we know that φ(i) + φ(j) ∈ I2. That shows that φ(i+ j) ∈ I2, or
i+ j ∈ φ−1(I2).

Now let r ∈ R1. We need to show that ir and ri ∈ φ−1(I2). We know that φ(i) ∈ I2, and
therefore r2φ(i) and φ(i)r2 ∈ I2 for any r2 ∈ R2, because I2 is an ideal. In particular, we let
r2 = φ(r), and then φ(r)φ(i) and φ(i)φ(r) ∈ I2. That shows that φ(ri) and φ(ir) ∈ I2, or
ri, ir ∈ φ−1(I2).

6. (5 points) Suppose that R is a commutative ring, and the only ideals of R are {0} and R.
Prove that R is a field.
Answer : We need to show that any non-zero element of R has an inverse in R. Let r be
such an element. The ideal (r) cannot be the zero ideal, because r 6= 0. Therefore (r) = R.
Because 1 ∈ R, we know that there is some element s ∈ R so that rs = 1. This shows that r
has an inverse.
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7. (10 points) Let

σ =
(

1 2 3 4 5 6 7 8 9
4 1 5 2 3 7 6 9 8

)
τ =

(
1 2 3 4 5 6 7 8 9
6 8 9 5 7 2 1 3 4

)
(a) Write σ ◦ τ in cycle notation.
(b) What is the order of σ?
(c) What is the order of τ?
(d) Is σ even or odd?
(e) Is τ even or odd?

Be sure to justify your answers.
Answer : We have σ = (142)(35)(67)(89) and τ = (162839457).

(a) Therefore, σ ◦ τ = (1743856)(29).
(b) o(σ) = 6.
(c) o(τ) = 9.
(d) σ = (142)(35)(67)(89) = (12)(14)(35)(67)(89), the product of an odd number of

transpositions, and therefore σ is odd.
(e) τ = (17)(15)(14)(19)(13)(18)(12)(16), the product of an even number of transpositions,

and therefore τ is even.

8. (15 points) Remember that A4 consists of the 12 elements in S4 which are even permuta-
tions. Let H = {e, (12)(34), (13)(24), (14)(23)}. You may assume without proof that H is a
subgroup of A4.

(a) Show that H is group isomorphic to Z/2Z× Z/2Z.
(b) List the left and right cosets of H in A4.
(c) Is H a normal subgroup of A4?

Answer : Here are the group operation tables for both H and Z/2Z× Z/2Z:
· e (12)(34) (13)(24) (14)(23)
e e (12)(34) (13)(24) (14)(23)

(12)(34) (12)(34) e (14)(23) (13)(24)
(13)(24) (13)(24) (14)(23) e (12)(34)
(14)(23) (14)(23) (13)(24) (12)(34) e

+ (0, 0) (0, 1) (1, 0) (1, 1)
(0, 0) (0, 0) (0, 1) (1, 0) (1, 1)
(0, 1) (0, 1) (0, 0) (1, 1) (1, 0)
(1, 0) (1, 0) (1, 1) (0, 0) (0, 1)
(1, 1) (1, 1) (1, 0) (0, 1) (0, 0)

(a) You can see from the group operation tables that any bijection between A4 and
Z/2Z× Z/2Z is a group isomorphism.

(b) We have
H = {e, (12)(34), (13)(24), (14)(23)}

H(123) = {(123), (243), (142), (134)}
H(132) = {(132), (143), (342), (124)}

H = {e, (12)(34), (13)(24), (14)(23)}
(123)H = {(123), (134), (324), (142)}
(132)H = {(132), (234), (124), (143)}

(c) A bit of inspection shows that left and right cosets are equal (remember that, for
example, (342) = (234)). Therefore, H is a normal subgroup of A4.

9. (10 points) Suppose that G is an abelian group with 6 elements. Show that G is isomorphic
to Z/6Z.
Answer : By Cauchy’s Theorem, G contains an element a with o(a) = 2 and an element b
with o(b) = 3. Because a and b commute, we can cite a homework problem to conclude
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that o(ab) = 6. Let c = ab, and we know that G is a cyclic group generated by c, so
G = {e, c, c2, c3, c4, c5}. Now the function φ : G → Z/6Z given by φ(cn) = [n]6 is an
isomorphism.

10. (10 points) Suppose that G is a nonabelian group with 6 elements. Show that G is
isomorphic to S3.
Answer : By Cauchy’s Theorem, G contains an element a with o(a) = 2 and an element b
with o(b) = 3. We can list the 6 elements of G as {e, b, b2, a, ab, ab2}.

We need to compute ba. We cannot have ba = e, or else b = a−1. We cannot have ba = b,
or else a = e. We cannot have ba = b2, or else a = b. We cannot have ba = a, or else b = e.
If ba = ab, then a and b commute, o(ab) = 6, G is cyclic, and therefore G is abelian.

The only possibility is that ba = ab2. We can now compute for example that b2a = b(ba) =
b(ab2) = (ba)b2 = ab4 = ab. Similar computations allow us to write out the complete group
operation table for G:

· e b b2 a ab ab2

e e b b2 a ab ab2

b b b2 e ab2 a ab
b2 b2 e b ab ab2 a
a a ab ab2 e b b2

ab ab ab2 a b2 e b
ab2 ab2 a ab b b2 e

Here is the operation table for S3:
· e (123) (132) (12) (23) (13)
e e (123) (132) (12) (23) (13)

(123) (123) (132) e (13) (12) (23)
(132) (132) e (123) (23) (13) (12)
(12) (12) (23) (13) e (123) (132)
(23) (23) (13) (12) (132) e (123)
(13) (13) (12) (23) (123) (132) e

Now inspection shows that these are the same group operation tables with the mapping
φ(e) = e, φ(b) = (123), φ(b2) = (132), φ(a) = (12), φ(ab) = (23), and φ(ab2) = (13).

Grade Number of people
70 1
52 1
51 1
48 1
38 1
37 1
36 1
24 1

Mean: 44.50
Standard deviation: 13.00


