Mathematics 310
Robert Gross
Homework 1
Due September 16, 2011
Remember that the Fibonacci numbers are defined with the three equations

$$
\begin{aligned}
& F_{1}=1 \\
& F_{2}=1 \\
& F_{n}=F_{n-1}+F_{n-2}
\end{aligned}
$$

For example, we have $F_{3}=2, F_{4}=3$, and $F_{5}=5$.

1. Let k be a positive integer. Prove that $F_{3 k}$ is always even.
2. Let k be a positive integer. Prove that $F_{4 k}$ is always a multiple of 3 .
3. Suppose that G is a group, and for every element $a \in G$, we have $a=a^{-1}$. Prove that G must be abelian.
4. If G is a finite group of even order, show that there must be an element $a \neq e$ such that $a=a^{-1}$.
5. Suppose that G is a group in which $(a b)^{2}=a^{2} b^{2}$ for every pair of elements a and b in G. Prove that G must be abelian.
6. If A and B are subgroups of G, show that $A \cap B$ is a subgroup of G.
7. Let G be a group in which $(a b)^{3}=a^{3} b^{3}$ and $(a b)^{5}=a^{5} b^{5}$ for all $a, b \in G$. Show that G is abelian.
8. Suppose that G is a group in which for some fixed positive integer n, we have the three equations

$$
\begin{aligned}
(a b)^{n} & =a^{n} b^{n} \\
(a b)^{n+1} & =a^{n+1} b^{n+1} \\
(a b)^{n+2} & =a^{n+2} b^{n+2}
\end{aligned}
$$

for every pair of elements a and b in G. Prove that G must be abelian.
9. Verify that $Z(G)$, the center of G, is a subgroup of G.
10. If G is an abelian group and if $H=\left\{a \in G \mid a^{2}=e\right\}$, show that H is a subgroup of G.

