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Homework 1

Answers

Remember that the Fibonacci numbers are defined with the three equations
F1 = 1
F2 = 1
Fn = Fn−1 + Fn−2

For example, we have F3 = 2, F4 = 3, and F5 = 5.

1. Let k be a positive integer. Prove that F3k is always even.
Answer: We prove this using induction. When k = 1, we must show that F3 is even, which
is true because F3 = 2. Now, we assume that F3k is even, and we must prove that F3k+3 is
even. We have

F3k+3 = F3k+2 + F3k+1 = (F3k+1 + F3k) + F3k+1 = 2F3k+1 + F3k

Because 2F3k+1 is even, and the inductive hypothesis is that F3k is even, we can conclude
that F3k+3 must be even.

2. Let k be a positive integer. Prove that F4k is always a multiple of 3.
Answer: Again, we proceed by induction. When k = 1, we must show that F4 is a multiple
of 3, which is true because F4 = 3. Now, we assume that F4k is a multiple of 3, and we must
prove that F4k+4 is a multiple of 3. We have

F4k+4 = F4k+3 + F4k+2 = (F4k+2 + F4k+1) + F4k+2

= 2F4k+2 + F4k+1 = 2(F4k+1 + F4k) + F4k+1 = 3F4k+1 + 2F4k.

We know that 3F4k+1 is a multiple of 3, and by assumption F4k is a multiple of 3, and
therefore F4k+4 is also a multiple of 3.

3. Suppose that G is a group, and for every element a ∈ G, we have a = a−1. Prove that G
must be abelian.
Answer: Let a, b ∈ G. We know that (ab)−1 = b−1a−1, and the given information tells us
both that (ab)−1 = ab and that b−1a−1 = ba. Therefore, ab = ba, and the group G is abelian.

4. If G is a finite group of even order, show that there must be an element a 6= e such that
a = a−1.
Answer: We can match each element in G with its inverse. Because g = (g−1)−1, each element
is paired with at most one element. However, the identity element e is paired with itself,
because e = e−1. Because there are an even number of elements in the set G, there must also
be at least one other element which is paired with itself, which is just another way of saying
that there is another element g ∈ G with g = g−1.

5. Suppose that G is a group in which (ab)2 = a2b2 for every pair of elements a and b in G.
Prove that G must be abelian.



Answer: Let a, b ∈ G. Then we are given (ab)2 = a2b2, but on the other hand, the definition
of (ab)2 tells us that (ab)2 = abab. Therefore, we have abab = a2b2. Cancel a factor of a on
the left and a factor of b on the right, and we have ba = ab, which shows that G is abelian.

6. If A and B are subgroups of G, show that A ∩ B is a subgroup of G.
Answer: We know that e ∈ A and e ∈ B, so e ∈ A ∩ B.

Second, suppose that g, h ∈ A ∩ B. Then g, h ∈ A, and because A is a subgroup, we know
that gh ∈ A. Similarly, gh ∈ B. Therefore, gh ∈ A ∩ B, which shows that A ∩ B is closed
under the group operation.

Third, suppose that g ∈ A ∩ B. We know that g−1 ∈ A and g−1 ∈ B, and therefore
g−1 ∈ A ∩ B, and therefore A ∩ B contains inverses of all of its elements.

This shows that A ∩ B is a subgroup of G.

7. Let G be a group in which (ab)3 = a3b3 and (ab)5 = a5b5 for all a, b ∈ G. Show that G is
abelian.
Answer: The equation (ab)3 = a3b3 tells us that ababab = aaabbb. Cancel a factor of a
on the left and b on the right, and we have baba = aabb. Similarly, (ab)5 = a5b5 tells us
that ababababab = aaaaabbbbb, and cancellation yields babababa = aaaabbbb. Group this as
(baba)(baba) = aaaabbbb, and use the equation baba = aabb to get aabbaabb = aaaabbbb. Now,
we can cancel two factors of a on the left and two factors of b on the right to get bbaa = aabb.
But aabb = baba, so we have bbaa = baba, and now cancellation of b on the left and a on the
right yields ba = ab, which shows that G is abelian.

8. Suppose that G is a group in which for some fixed positive integer n, we have the three
equations

(ab)n = anbn

(ab)n+1 = an+1bn+1

(ab)n+2 = an+2bn+2

for every pair of elements a and b in G. Prove that G must be abelian.
Answer: Take the first equation, and multiply by ab on the right. We get (ab)n+1 = anbnab.
Substitute into the equation (ab)n+1 = an+1bn+1 to get anbnab = an+1bn+1. Cancel a factor of
an on the left, and b on the right, and we get bna = abn.

Return to the first given equation, and multiply by abab on the right. We get (ab)n+2 =
anbnabab. Substitute into the third given equation, and the result is anbnabab = an+2bn+2.
Now cancellation results in (bna)ba = a2bn+1. Because bna = abn, we can substitute and
get (abn)ba = a2bn+1, and now cancellation of a factor of a on the left yields bn+1a = abn+1.
Rewrite this as b(bna) = abn+1. Now substitute bna = abn, and we get babn = abn+1.

Finally, cancel a factor of bn on the right, and the result is ba = ab, which shows that G is
abelian.

9. Verify that Z(G), the center of G, is a subgroup of G.
Answer: Recall that the definition is

Z(G) = {g ∈ G : gx = xg for all x ∈ G}.

First, because ex = xe for all x ∈ G, we have e ∈ Z(G).



Second, suppose that g, h ∈ Z(G), so that gx = xg and hx = xh for all x = inG. Then
(gh)x = g(hx) = g(xh) = (gx)h = (xg)h = x(gh), which shows that gh ∈ Z(G).

Third, if g ∈ Z(G), then gx = xg for every x ∈ G. Multiply this equation on both the left
and the right by g−1, and the resulting equation is xg−1 = g−1x for every x ∈ G. This shows
that x−1 ∈ Z(G), showing that the inverse of every element in Z(G) is also in Z(G).

These three properties show that Z(G) is a subgroup.

10. If G is an abelian group and if H = {a ∈ G | a2 = e}, show that H is a subgroup of G.
Answer: First, e2 = e, so e ∈ H.

Second, if g, h ∈ H, then g2 = e and h2 = e. Using the fact that gh = hg, we have
(gh)2 = g2h2 = e, showing that H is closed under the group operation.

Finally, if h ∈ H, then (h−1)2 = (h2)−1 = e, which shows that the inverse of each element
in H is also in H. That shows that H is a subgroup.


