Mathematics 310

Robert Gross
Homework 2
Due September 23, 2011

1. Let G be a group and H a subgroup of G. Define, for $a, b \in G, a \sim b$ if $a^{-1} b \in H$. Prove that this defines an equivalence relation on G, and show that $[a]=a H=\{a h \mid h \in H\}$. The sets $a H$ are called left cosets of H in G.
2. Remember that S_{3} is another name for the set of all bijections from the set $\{1,2,3\}$ to itself. For the sake of the next few problems, let's label the 6 bijections as follows:

$$
\begin{aligned}
& \begin{array}{lll}
1 \rightarrow 1 & 1 \rightarrow 2 & 1 \rightarrow 3
\end{array} \\
& e: 2 \rightarrow 2 \quad f: 2 \rightarrow 3 \quad f^{2}: 2 \rightarrow 1 \\
& 3 \rightarrow 3 \quad 3 \rightarrow 1 \quad 3 \rightarrow 2 \\
& g: \begin{array}{l}
1 \rightarrow 2 \\
2 \rightarrow 1 \\
3 \rightarrow 3
\end{array} \quad h: \begin{array}{l}
1 \rightarrow 3 \\
2 \rightarrow 2 \\
3 \rightarrow 1
\end{array} \quad k: \begin{array}{l}
1 \rightarrow 1 \\
2 \rightarrow 3 \\
3 \rightarrow 2
\end{array}
\end{aligned}
$$

Let H be the subgroup $\{e, g\}$. (You do not need to show that H is a subgroup.) List the elements in each of the 3 right cosets $H a$.
3. List the elements in the 3 left cosets $a H$.
4. On last week's homework, we showed that if G is an abelian group and $H=\{g \in G \mid$ $\left.g^{2}=e\right\}$, then H is a subgroup of G. This fact is only true of abelian groups. Verify that $H=\left\{a \in S_{3} \mid a^{2}=e\right\}$ is not a subgroup of S_{3}.
5. If A and B are subgroups of an abelian group G, let $A B=\{a b \mid a \in A, b \in B\}$. Prove that $A B$ is a subgroup of G.
6. Now find an example of a group G and two subgroups A and B of G such that $A B$ is not a subgroup of G.
7. If in a group $G, a b a^{-1}=b^{i}$, show that $a^{r} b a^{-r}=b^{i^{r}}$ for all positive integers r.
8. Suppose that G is a group, $a, b \in G$, and

$$
\begin{align*}
a^{5} & =e \tag{1}\\
a b a^{-1} & =b^{2} \tag{2}\\
b & \neq e \tag{3}
\end{align*}
$$

What is $o(b)$?
9. Let

$$
G=\left\{\left.\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right) \right\rvert\, a, b \in \mathbf{R}, a^{2}+b^{2} \neq 0\right\}
$$

Show that G is an abelian group with group operation matrix multiplication.

