Mathematics 310 Robert Gross Homework 2 Due September 23, 2011

- 1. Let G be a group and H a subgroup of G. Define, for $a, b \in G$, $a \sim b$ if $a^{-1}b \in H$. Prove that this defines an equivalence relation on G, and show that $[a] = aH = \{ah \mid h \in H\}$. The sets aH are called *left cosets* of H in G.
- 2. Remember that S_3 is another name for the set of all bijections from the set $\{1, 2, 3\}$ to itself. For the sake of the next few problems, let's label the 6 bijections as follows:

Let H be the subgroup $\{e, g\}$. (You do not need to show that H is a subgroup.) List the elements in each of the 3 right cosets Ha.

- 3. List the elements in the 3 left cosets aH.
- 4. On last week's homework, we showed that if G is an abelian group and $H = \{g \in G \mid g^2 = e\}$, then H is a subgroup of G. This fact is only true of abelian groups. Verify that $H = \{a \in S_3 \mid a^2 = e\}$ is not a subgroup of S_3 .
- 5. If A and B are subgroups of an abelian group G, let $AB = \{ab \mid a \in A, b \in B\}$. Prove that AB is a subgroup of G.
- 6. Now find an example of a group G and two subgroups A and B of G such that AB is not a subgroup of G.
- 7. If in a group G, $aba^{-1} = b^i$, show that $a^rba^{-r} = b^{i^r}$ for all positive integers r.
- 8. Suppose that G is a group, $a, b \in G$, and

$$a^5 = e$$

$$aba^{-1} = b^2$$

$$(3) b \neq e$$

What is o(b)?

9. Let

$$G = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \middle| a, b \in \mathbf{R}, \ a^2 + b^2 \neq 0 \right\}.$$

Show that G is an abelian group with group operation matrix multiplication.