
Mathematics 310
Robert Gross
Homework 2

Answers

1. Let G be a group and H a subgroup of G. Define, for a, b ∈ G, a ∼ b if a−1b ∈ H. Prove
that this defines an equivalence relation on G, and show that [a] = aH = {ah | h ∈ H}. The
sets aH are called left cosets of H in G.
Answer: Reflexivity: We need to check that a ∼ a. Because a−1a ∈ H, we know that
a ∼ a.

Symmetry: Given a ∼ b, we need to verify that b ∼ a. We are given a−1b ∈ H. Because
H is a subgroup, it contains the inverse of each of its elements, and so (a−1b)−1 ∈ H. But
(a−1b)−1 = b−1a, and if b−1a ∈ H, then b ∼ a.

Transitivity: Given a ∼ b and b ∼ c, we need to see that a ∼ c. We are given
a−1b ∈ H and b−1c ∈ H. Because H is closed under the group operation, we know that
(a−1b)(b−1c) = a−1c ∈ H, which tells us that a ∼ c.

Now, if a ∼ b, then a−1b = h for some h ∈ H, and then b = ah. On the other hand, if
b = ah, then a−1b ∈ H. This shows that [a] = aH.

2. Remember that S3 is another name for the set of all bijections from the set {1, 2, 3} to
itself. For the sake of the next few problems, let’s label the 6 bijections as follows:

1→ 1
e : 2→ 2

3→ 3

1→ 2
f : 2→ 3

3→ 1

1→ 3
f 2 : 2→ 1

3→ 2

1→ 2
g : 2→ 1

3→ 3

1→ 3
h : 2→ 2

3→ 1

1→ 1
k : 2→ 3

3→ 2

Let H be the subgroup {e, g}. (You do not need to show that H is a subgroup.) List the
elements in each of the 3 right cosets Ha.
Answer: We start by computing that gf = k, and that gf 2 = h. Therefore, the three right
cosets are

He = {e, g} = Hg

Hf = {f, k} = Hk

Hf 2 = {f 2, h} = Hh.

3. List the elements in the 3 left cosets aH.
Answer: Now, we compute that fg = h, and f 2g = k. Therefore, the three left cosets are

eH = {e, g} = gH

fH = {f, h} = hH

f 2H = {f 2, k} = kH.



4. On last week’s homework, we showed that if G is an abelian group and H = {g ∈ G |
g2 = e}, then H is a subgroup of G. This fact is only true of abelian groups. Verify that
H = {a ∈ S3 | a2 = e} is not a subgroup of S3.
Answer: We compute that the set H = {a ∈ S3 | a2 = e} = {e, g, h, k}. This can’t possibly
be a subgroup of G, because it has 4 elements and G has 6 elements. Specifically, H is not
closed under the group operation, because gh = f 2 6∈ H.

5. If A and B are subgroups of an abelian group G, let AB = {ab | a ∈ A, b ∈ B}. Prove
that AB is a subgroup of G.
Answer: First, e ∈ A and e ∈ B, so e = e · e ∈ AB.

Second, if a1b1, a2b2 ∈ AB, then (a1b1)(a2b2) = (a1a2)(b1b2) ∈ AB, so AB is closed under
the group operation.

Third, if ab ∈ AB, then (ab)−1 = a−1b−1 ∈ AB, so AB contains inverses.
Notice that both closure and inverses used the given information that G be abelian.

6. Now find an example of a group G and two subgroups A and B of G such that AB is not
a subgroup of G.
Answer: The only non-abelian group that we can easily handle is S3 (though finding an
example with matrices is certainly possible). Let A = {e, g} and B = {e, h}. Then
AB = {e, g, h, gh = f 2}. This set does not contain the inverse of each element, because
(f 2)−1 = f . It also is not closed under the group operation, because f 2g = k 6∈ AB.

7. If in a group G, aba−1 = bi, show that arba−r = bir for all positive integers r.
Answer: This problem calls for a proof by induction. The case r = 1 is just the given
equation.

Second suppose that the statement is true when r = k and we need to prove it when
r = k + 1. We are given that akba−k = bik . Then ak+1ba−k−1 = a(akba−k)a−1 = abik

a−1.
Now, a(cd)a−1 = (aca−1)(ada−1), and so abik

a−1 = (aba−1)ik = (bi)ik = bik+1 , proving the
inductive step.

8. Suppose that G is a group, a, b ∈ G, and
a5 = e(1)

aba−1 = b2(2)
b 6= e(3)

What is o(b)?
Answer: Using the previous problem, we have b = ebe = a5ba−5 = b25 = b32. Multiply by b−1,
and we have b31 = e.

We showed in class that if o(a) = n and ak = e, then n|e. Here, we have b31 = e, so o(b)|31.
Because 31 is prime, we know that o(b) = 1 or o(b) = 31. Because b 6= e, we know that
o(b) 6= 1, and therefore o(b) = 31.

9. Let

G =


(

a b
−b a

) ∣∣∣∣∣∣ a, b ∈ R, a2 + b2 6= 0

 .

Show that G is an abelian group with group operation matrix multiplication.



Answer: It’s easy to see that I =
(

1 0
0 1

)
∈ G. Therefore G contains the identity element.j

We need to verify closure. Suppose that A =
(

a b
−b a

)
and B =

(
c d
−d c

)
. Then

AB =
(

ac− bd ad + bc
−ad− bc −bd + ac

)
. Note that the resulting matrix again has the form

(
t s
−s t

)
.

Furthermore, the equation det(AB) = det(A) det(B) tells us that det(AB) 6= 0. Hence,
AB ∈ G.

Next, A−1 = 1
a2 + b2

(
a −b
b a

)
∈ G.

Finally, to see that G is abelian, we compute BA =
(

ca− db cb + ad
−ad− bc −bc + ac

)
= AB.


