Mathematics 310

Robert Gross
Homework 3
Due September 30, 2011

1. Let

$$
G_{1}=\left\{\left.\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right) \right\rvert\, a, b \in \mathbf{R}, a^{2}+b^{2} \neq 0\right\}
$$

Last week, we saw that G_{1} is an abelian group with group operation matrix multiplication.
Define a function $\phi: \mathbf{C}^{\times} \rightarrow G_{1}$ with the formula $\phi(a+i b)=\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$. Show that ϕ is an isomorphism.
2. Let

$$
G_{2}=\left\{\left.\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) \right\rvert\, x \in \mathbf{R}\right\} .
$$

(a) Show that G_{2} is a group with group operation matrix multiplication.
(b) Show that the function $\phi: \mathbf{R} \rightarrow G_{2}$ defined by $\phi(x)=\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right)$ is an isomorphism of the group $(\mathbf{R},+)$ with G_{2}.
3. Let

$$
G_{3}=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right) \right\rvert\, a, b \in \mathbf{R}, a \neq 0\right\} .
$$

Show that G_{3} is a group with group operation matrix multiplication.
4. Let

$$
H_{3}=\left\{\left.\left(\begin{array}{cc}
a & b \\
0 & 1
\end{array}\right) \in G_{3} \right\rvert\, a \in \mathbf{Q}, a \neq 0\right\}
$$

Show that $H_{3} \triangleleft G_{3}$.
5. Recall that we talked about the group

$$
G_{4}=\left\{T_{a, b}: \mathbf{R} \rightarrow \mathbf{R} \mid T_{a, b}(x)=a x+b, a, b \in \mathbf{R}, a \neq 0\right\}
$$

with group operation matrix multiplication. Define $\phi: G_{4} \rightarrow G_{3}$ with $\phi\left(T_{a, b}\right)=\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right)$. Show that ϕ is an isomorphism.
6. Suppose that G is a group, and M and N are subgroups of G. Suppose further that $N \triangleleft G$. Let $M N=\{m n \mid m \in M, n \in N\}$. Prove that $M N$ is a subgroup of G.
7. Suppose that G is a group, and M and N are normal subgroups of G.
(a) Show that $M \cap N$ is a normal subgroup of G.
(b) The previous problem shows that $M N$ is a subgroup of G. Now show that $M N$ is a normal subgroup of G.

