Mathematics 310

Robert Gross
Homework 3
Answers

1. Let

$$
G_{1}=\left\{\left.\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right) \right\rvert\, a, b \in \mathbf{R}, a^{2}+b^{2} \neq 0\right\}
$$

Last week, we saw that G_{1} is an abelian group with group operation matrix multiplication.
Define a function $\phi: \mathbf{C}^{\times} \rightarrow G_{1}$ with the formula $\phi(a+i b)=\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$. Show that ϕ is an isomorphism.
Answer: We need to show that ϕ is a homomorphism, that ϕ is $1-1$, and that ϕ is surjective.
First, we check that $\phi(a+i b) \phi(c+i d)=\phi((a+i b)(c+i d))$. On the left-hand side, we have

$$
\begin{aligned}
\phi(a+i b) & =\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right) \\
\phi(c+i d) & =\left(\begin{array}{cc}
c & d \\
-d & c
\end{array}\right) \\
\phi(a+i b) \phi(c+i d) & =\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)\left(\begin{array}{cc}
c & d \\
-d & c
\end{array}\right) \\
& =\left(\begin{array}{cc}
a c-b d & a d+b c \\
-b c-a d & -b d+a c
\end{array}\right)
\end{aligned}
$$

while

$$
\begin{aligned}
\phi((a+i b)(c+i d)) & = \\
\phi(a c-b d+i(a d+b c)) & =\left(\begin{array}{cc}
a c-b d & a d+b c \\
-a d-b c & a c-b d
\end{array}\right)
\end{aligned}
$$

This shows that ϕ is a homomorphism.
Now, we can verify that ϕ is an injection just by observing that $\operatorname{ker}(\phi)=1$. Finally, ϕ is onto because given any matrix $\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right) \in G_{1}$, obviously $\phi(a+b i)=\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$.
2. Let

$$
G_{2}=\left\{\left.\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) \right\rvert\, x \in \mathbf{R}\right\}
$$

(a) Show that G_{2} is a group with group operation matrix multiplication.
(b) Show that the function $\phi: \mathbf{R} \rightarrow G_{2}$ defined by $\phi(x)=\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right)$ is an isomorphism of the group $(\mathbf{R},+)$ with G_{2}.

Answer: (a) We have

$$
\begin{aligned}
\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & y \\
0 & 1
\end{array}\right) & =\left(\begin{array}{cc}
1 & x+y \\
0 & 1
\end{array}\right) \\
\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)^{-1} & =\left(\begin{array}{cc}
1 & -x \\
0 & 1
\end{array}\right)
\end{aligned}
$$

which shows that G_{2} is closed under the group operation and contains inverses. Finally, setting $x=0$ shows that $I \in G_{2}$.
(b) Now, we have

$$
\phi(x) \phi(y)=\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & y \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & x+y \\
0 & 1
\end{array}\right)=\phi(x+y)
$$

showing that ϕ is a homomorphism. It is easy to compute $\operatorname{ker}(\phi)=0$, which shows that ϕ is $1-1$. Finally, we observe that ϕ is onto because of the way that ϕ and G_{2} are defined.
3. Let

$$
G_{3}=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right) \right\rvert\, a, b \in \mathbf{R}, a \neq 0\right\} .
$$

Show that G_{3} is a group with group operation matrix multiplication.
Answer: We check closure and inverses:

$$
\begin{aligned}
\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
c & d \\
0 & 1
\end{array}\right) & =\left(\begin{array}{cc}
a c & a d+b \\
0 & 1
\end{array}\right) \\
\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)^{-1} & =\left(\begin{array}{cc}
a^{-1} & -b a^{-1} \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Setting $a=1$ and $b=0$ shows that $I \in G_{3}$.
4. Let

$$
H_{3}=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right) \in G_{3} \right\rvert\, a \in \mathbf{Q}, a \neq 0\right\} .
$$

Show that $H_{3} \triangleleft G_{3}$.
Answer: If $\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}c & d \\ 0 & 1\end{array}\right) \in H_{3}$, then $\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}c & d \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}a c & a d+b \\ & 1\end{array}\right) \in H_{3}$ because $a c \in \mathbf{Q}$. Similarly, $\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right)^{-1} \in H_{3}$, because $a^{-1} \in \mathbf{Q}$. Finally, $I \in H_{3}$. This shows that H_{3} is a subgroup. It remains to verify normality.

Suppose that $h=\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right) \in H_{3}$. Let $g=\left(\begin{array}{ll}c & d \\ 0 & 1\end{array}\right) \in G_{3}$. Let $g^{-1}=\left(\begin{array}{cc}c^{-1} & -d c^{-1} \\ 0 & 1\end{array}\right)$.
Then $g h g^{-1}=\left(\begin{array}{ll}c & d \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}a & b \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}c^{-1} & -d c^{-1} \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}a c & b c+d \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}c^{-1} & -d c^{-1} \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}c & * \\ 0 & 1\end{array}\right)$.
Therefore, $g h g^{-1} \in H_{3}$ because $c \in \mathbf{Q}$; the exact form of the entry in the upper right corner is irrelevant.
5. Recall that we talked about the group

$$
G_{4}=\left\{T_{a, b}: \mathbf{R} \rightarrow \mathbf{R} \mid T_{a, b}(x)=a x+b, a, b \in \mathbf{R}, a \neq 0\right\}
$$

with group operation matrix multiplication. Define $\phi: G_{4} \rightarrow G_{3}$ with $\phi\left(T_{a, b}\right)=\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right)$. Show that ϕ is an isomorphism.
Answer: We have

$$
\begin{aligned}
\phi\left(T_{a, b}\right) & =\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right) \\
\phi\left(T_{c, d}\right) & =\left(\begin{array}{ll}
c & d \\
0 & 1
\end{array}\right) \\
\phi\left(T_{a, b} T_{c, d}\right) & =\left(\begin{array}{cc}
a c & a d+b \\
0 & 1
\end{array}\right)
\end{aligned}
$$

and $T_{a, b} T_{c, d}=T_{a c, a d+b}$. This shows that ϕ is a homomorphism.
We compute $\operatorname{ker}(\phi)=T_{1,0}$, which is the identity element in G_{4}. Therefore, ϕ is $1-1$. Finally, again the definition of ϕ and G_{3} make is clear that ϕ is surjective.
6. Suppose that G is a group, and M and N are subgroups of G. Suppose further that $N \triangleleft G$. Let $M N=\{m n \mid m \in M, n \in N\}$. Prove that $M N$ is a subgroup of G.
Answer: We know that $e \in M$ and $e \in N$, so $e=e \cdot e \in M N$.
Next, let's take care of inverses. Suppose that $m n \in M N$. Then $(m n)^{-1}=n^{-1} m^{-1}=$ $\left(m^{-1} m\right)\left(n^{-1} m^{-1}\right)=m^{-1}\left(m n^{-1} m^{-1}\right)$. Now, we know that $m^{-1} \in M$, and we have $m n^{-1} m^{-1} \in$ N because $n^{-1} \in N$ and $N \triangleleft G$. So $m^{-1}\left(m n^{-1} m^{-1}\right) \in M N$.

Finally, what about closure? Suppose that $m_{1} n_{1}, m_{2} n_{2} \in M N$. We need to verify that $m_{1} n_{1} m_{2} n_{2} \in M N$. The idea is another trick: $\left(m_{1} n_{1}\right)\left(m_{2} n_{2}\right)=\left(m_{1} m_{2}\right)\left(m_{2}^{-1} n_{1} m_{2}\right) n_{2}$. Now, $m_{1} m_{2} \in M$. Because of normality, $m_{2}^{-1} n_{1} m_{2} \in N$, and $n_{2} \in N$, so $\left(m_{2}^{-1} n_{1} m_{2}\right) n_{2} \in N$. Therefore, $m_{1} n_{1} m_{2} n_{2} \in M N$, proving that $M N$ is a subgroup.
7. Suppose that G is a group, and M and N are normal subgroups of G.
(a) Show that $M \cap N$ is a normal subgroup of G.
(b) The previous problem shows that $M N$ is a subgroup of G. Now show that $M N$ is a normal subgroup of G.
Answer: (a) We showed in the first homework that if A and B are subgroups of G, so is $A \cap B$. Now we need to show that $M \cap N$ is normal.

Take $k \in M \cap N$, and $g \in G$. We must show that $g k g^{-1} \in M \cap N$. Because $k \in M \cap N$,
 $g k g^{-1} \in N$. Therefore, $g k g^{-1} \in M \cap N$, showing that $M \cap N$ is a normal subgroup.
(b) Suppose that $m n \in M N$. Let $g \in G$. We need to show that $g(m n) g^{-1} \in M N$. Write $g(m n) g^{-1}=\left(g m g^{-1}\right)\left(g n g^{-1}\right)$. Then $g m g^{-1} \in M$, because $M \triangleleft G$, and $g n g^{-1} \in N$, because $N \triangleleft G$. Therefore, $\left(g m g^{-1}\right)\left(g n g^{-1}\right) \in M N$, showing that $M N \triangleleft G$.

