Mathematics 310

Robert Gross
Homework 4
Due October 14, 2011

1. Suppose that m, n, and k are positive integers, with $(m, n)=1, m \mid k$, and $n \mid k$. Prove that $m n \mid k$.
2. Suppose that G is an abelian group, with $a, b \in G$. Suppose that $o(a)=m$ and $o(b)=n$, and $(m, n)=1$. Prove that $o(a b)=m n$. Note: It is clear that $(a b)^{m n}=e$; the point is that you must show that no smaller exponent j satisfies $(a b)^{j}=e$.
3. Suppose that G is a finite abelian group, and $o(G)=p^{a} m$, where $p \nmid m, a \geq 1$, and p is a prime. Let $H=\left\{g \in G: g^{p^{a}}=e\right\}$.
(a) Prove that H is a subgroup of G.
(b) Prove that if $h \in H$, then the only prime that might divide $o(h)$ is p.
(c) Prove that the only prime dividing $o(H)$ is p. Hint: Apply Cauchy's Theorem.
(d) Show that $p \nmid o(G / H)$. Hint: Cauchy's Theorem says that if $p \mid o(G / H)$, then G / H contains a coset of order p. Now use an argument similar to the one which we used to prove Cauchy's Theorem.
(e) Show that $o(H)=p^{a}$.

This is a specific case of one of the Sylow Theorems, which apply to both abelian and non-abelian groups. The proof is much trickier in the case of non-abelian groups.
4. If $\phi: G_{1} \rightarrow G_{2}$ is a surjective homomorphism, and $N \triangleleft G_{1}$, show that $\phi(N) \triangleleft G_{2}$. You may assume that $\phi(N)$ is a subgroup of G_{2}.
5. If H is any subgroup of G, let $N(H)$ be defined by:

$$
N(H)=\{a \in G \mid a H=H a\}
$$

Prove that:
(a) $N(H)$ is a subgroup of G, and $N(H) \supset H$.
(b) $H \triangleleft N(H)$.
(c) If K is a subgroup of G such that $H \triangleleft K$, then $K \subset N(H)$.

These facts combine to tell us that $N(H)$ is the largest subgroup of G in which H is normal. The group $N(H)$ is called the normalizer of H.

