Mathematics 310
Robert Gross
Homework 4
Answers

1. Suppose that m, n, and k are positive integers, with $(m, n)=1, m \mid k$, and $n \mid k$. Prove that $m n \mid k$.
Answer: Because $(m, n)=1$, we can find integers x and y so that $m x+n y=1$. Multiply that equation by k, yielding $m x k+n y k=k$. We know that $m \mid m$ and $n \mid k$, so $m n \mid m x k$. We know that $n \mid n$ and $m \mid k$, so $m n \mid n y k$. Therefore, $m n \mid k$.
2. Suppose that G is an abelian group, with $a, b \in G$. Suppose that $o(a)=m$ and $o(b)=n$, and $(m, n)=1$. Prove that $o(a b)=m n$. Note: It is clear that $(a b)^{m n}=e$; the point is that you must show that no smaller exponent j satisfies $(a b)^{j}=e$.
Answer: Suppose that $(a b)^{k}=e$, with $k>0$. We need to show that $k \geq m n$. Take the equation $(a b)^{k}=e$, and raise both sides to the power m. We get $b^{k m}=e$. We can now conclude that $n \mid k m$. Because $(n, m)=1$, we know that $n \mid k$.

Similarly, take the equation $(a b)^{k}=e$, and raise both sides to the power n. We get $a^{k n}=e$, which implies that $m \mid k n$. Because $(m, n)=1$, we know that $m \mid k$.

We now have a situation in which $m|k, n| k$, and $(m, n)=1$. The previous problem now lets us conclude that $m n \mid k$, implying that $m n \leq k$.
3. Suppose that G is a finite abelian group, and $o(G)=p^{a} m$, where $p \nmid m, a \geq 1$, and p is a prime. Let $H=\left\{g \in G: g^{p^{a}}=e\right\}$.
(a) Prove that H is a subgroup of G.
(b) Prove that if $h \in H$, then the only prime that might divide $o(h)$ is p.
(c) Prove that the only prime dividing $o(H)$ is p. Hint: Apply Cauchy's Theorem.
(d) Show that $p \nmid o(G / H)$. Hint: Cauchy's Theorem says that if $p \mid o(G / H)$, then G / H contains a coset of order p. Now use an argument similar to the one which we used to prove Cauchy's Theorem.
(e) Show that $o(H)=p^{a}$.

This is a specific case of one of the Sylow Theorems, which apply to both abelian and non-abelian groups. The proof is much trickier in the case of non-abelian groups.
Answer: (a) Notice first that $e \in H$, so $H \neq \emptyset$. Now, suppose that $g, h \in H$. Then $g^{p^{a}}=e$ and $h^{p^{a}}=e$. Therefore, $(g h)^{p^{a}}=g^{p^{a}} h^{p^{a}}=e$, implying that $g h \in H$. We also can compute $\left(g^{-1}\right)^{p^{a}}=\left(g^{p^{a}}\right)^{-1}=e^{-1}=e$, so $g^{-1} \in H$. Because H is closed and contains the inverse of each element in H, we know that H is a subgroup.
(b) Suppose that $h \in H$ and q is a prime dividing $o(h)$. We know that $h^{p^{a}}=e$, so $o(h) \mid p^{a}$. We also know that $q \mid o(h)$, so we conclude that $q \mid p^{a}$. Because q and p are primes, we conclude that $q=p$. So the only prime dividing $o(h)=p$.
(c) Suppose that q is a prime dividing $o(H)$. We know by Cauchy's Theorem that H must contain an element of order q, so there is some element $h \in H$ with $o(h)=q$. Then (b) says that q must be p, and therefore $o(H)=p^{b}$.
(d) This is harder. Suppose that $p \mid o(G / H)$. Then G / H must contain a coset of order p. That means that there is some coset $g H$ with $g \notin H$, and $(g H)^{p}=e H$. We know that $(g H)^{p}=g^{p} H$, so we have produced an element $g \in G$, with $g \notin H$ and $g^{p} \in H$.

Because $g^{p} \in H$, we know that $\left(g^{p}\right)^{p^{a}} \in H$, so $g^{p^{a+1}}=e$. The corollary to Lagrange's Theorem tells us that $g^{p^{a} m}=e$. Now, we know that $o(g) \mid p^{a+1}$ and $o(g) \mid p^{a} m$, so $o(g) \mid p^{a}$, because $p \nmid m$. If $o(g) \mid p^{a}$, then $g^{p^{a}}=e$, and then $g \in H$. This is a contradiction. The conclusion is therefore that $p \nmid o(G / H)$.
(e) This last step has nothing to do with group theory. We have a situation in which $o(G)=p^{a} m$, with $p \nmid m$. We know that $o(H)=p^{b}$, and $p \nmid o(G / H)$. Because $o(G / H)=$ $o(G) / o(H)$, we know that $p \nmid p^{a} m / p^{b}=p^{a-b} m$. Therefore, $b=a$, so $o(H)=p^{a}$.
4. If $\phi: G_{1} \rightarrow G_{2}$ is a surjective homomorphism, and $N \triangleleft G_{1}$, show that $\phi(N) \triangleleft G_{2}$. You may assume that $\phi(N)$ is a subgroup of G_{2}.
Answer: Take $g \in G_{2}$, and $n \in \phi(N)$. We must show that $g n g^{-1} \in \phi(N)$.
Because ϕ is surjective, we can find $a \in G_{1}$ with $\phi(a)=g$. Similarly, we can find $m \in N$ with $\phi(m)=n$. Then $g n g^{-1}=\phi(a) \phi(m) \phi(a)^{-1}=\phi\left(a m a^{-1}\right)$. Now, because $N \triangleleft G_{1}$, $a m a^{-1} \in N$, and therefore $\phi\left(a m a^{-1}\right) \in \phi(N)$. In other words, $g n g^{-1} \in \phi(N)$.
5. If H is any subgroup of G, let $N(H)$ be defined by:

$$
N(H)=\{a \in G \mid a H=H a\} .
$$

Prove that:
(a) $N(H)$ is a subgroup of G, and $N(H) \supset H$.
(b) $H \triangleleft N(H)$.
(c) If K is a subgroup of G such that $H \triangleleft K$, then $K \subset N(H)$.

These facts combine to tell us that $N(H)$ is the largest subgroup of G in which H is normal. The group $N(H)$ is called the normalizer of H.
Answer: (a) Suppose that $a, b \in N(H)$. We must show that $a b \in N(H)$ and $a^{-1} \in N(H)$. We have $(a b) H=a(b H)=a(H b)=(a H) b=(H a) b=H(a b)$, showing that $a b \in H$.

To show that $a^{-1} \in N(H)$, start with $a H=H a$. Multiply on both the left and the right by a^{-1}, and we get $H a^{-1}=a^{-1} H$, showing that $a^{-1} \in H$.

Finally, if $h \in H$, then $h H=H=H h$, so $h \in N(H)$. This proves that $H \subset N(H)$.
(b) Now, we must show that if $h \in H$ and $n \in N(H)$, then $n h n^{-1} \in H$. We know that $n H=H n$, and because $n h \in n H$, we know that $n h \in H n$. Therefore, we can write $n h=h^{\prime} n$ for some element $h^{\prime} \in H$. Then $n h n^{-1}=\left(h^{\prime} n\right) n^{-1}=h^{\prime} \in H$, so $H \triangleleft N(H)$.
(c) Finally, if $H \triangleleft K$, we know that $k H=H k$ for every $k \in K$. This shows that $k \in N(H)$ for every $k \in K$, and therefore $K \subset N(H)$.

