Mathematics 310 Robert Gross Homework 5 Due October 21, 2011

1. Suppose that G is a finite group, with H a subgroup of G and g an element of G. Suppose that k is the smallest positive integer so that $g^k \in H$. Prove that k|o(g). Hint: Use the division algorithm to write o(g) = qk + r, and show that r = 0.

- 2. Suppose that G is a group, H a subgroup of G, and $N \triangleleft G$. Show that $H \cap N \triangleleft H$.
- 3. Suppose that $\phi: G_1 \to G_2$ is a homomorphism, and $N_2 \triangleleft G_2$. Let

$$N_1 = \{ g_1 \in G_1 : \phi(g_1) \in N_2 \}.$$

- (1) Show that $N_1 \triangleleft G_1$.
- (2) Show that $\ker(\phi) \subset N_1$.

4. Suppose that G is a finite group with subgroups A and B. Suppose that $o(A) > o(B) > \sqrt{o(G)}$. Prove that $A \cap B \neq \{e\}$.

- 5. Suppose that G_1 is a group, and $G = G_1 \times G_1$. Let $D = \{(a, a) \in G : a \in G_1\}$.
 - (1) Show that D is a subgroup of G.
 - (2) Suppose that $D \triangleleft G$. Prove that G_1 is abelian.

6. If $M \triangleleft G$, $N \triangleleft G$, and $M \cap N = \{e\}$, show that for $m \in M$, $n \in N$, mn = nm. Hint: Show that $mnm^{-1}n^{-1} \in M \cap N$.

7. Recall that an *automorphism* of a group G is an isomorphism $\phi : G \to G$. Find all automorphisms of the group $\mathbb{Z}/8\mathbb{Z}$. To define an automorphism, you can show explicitly where it maps each of the 8 elements of $\mathbb{Z}/8\mathbb{Z}$. For example, the identity isomorphism is

$$\begin{array}{c} 0 \rightarrow 0 \\ 1 \rightarrow 1 \\ 2 \rightarrow 2 \\ \text{id:} \quad 3 \rightarrow 3 \\ 4 \rightarrow 4 \\ 5 \rightarrow 5 \\ 6 \rightarrow 6 \\ 7 \rightarrow 7 \end{array}$$