Mathematics 310
 Robert Gross
 Homework 5 Answers

1. Suppose that G is a finite group, with H a subgroup of G and g an element of G. Suppose that k is the smallest positive integer so that $g^{k} \in H$. Prove that $k \mid o(g)$. Hint: Use the division algorithm to write $o(g)=q k+r$, and show that $r=0$.
Answer: Write $o(g)=q k+r$, with $0 \leq r<k$. We have $g^{o(g)}=e \in H$, and $g^{k} \in H$. Therefore, $e=\left(g^{k}\right)^{q} g^{r} \in H$, so $g^{r}=\left(g^{k}\right)^{-q} \in H$. But $r<k$, and k is the smallest positive integer so that $g^{k} \in H$. The conclusion is that $r=0$ and then $k \mid o(g)$.
2. Suppose that G is a group, H a subgroup of G, and $N \triangleleft G$. Show that $H \cap N \triangleleft H$.

Answer: We know that $H \cap N$ is a subgroup from earlier homework, so the only issue is proving normality. Suppose that $h \in H$ and $n \in H \cap N$. We must show that $h n h^{-1} \in H \cap N$. Because $h \in H$ and $n \in H$, we know that $h n h^{-1} \in H$. Our remaining problem is to show that $h n h^{-1} \in N$, but that follows because $N \triangleleft G$ and $h \in G$.
3. Suppose that $\phi: G_{1} \rightarrow G_{2}$ is a homomorphism, and $N_{2} \triangleleft G_{2}$. Let

$$
N_{1}=\left\{g_{1} \in G_{1}: \phi\left(g_{1}\right) \in N_{2}\right\}
$$

(1) Show that $N_{1} \triangleleft G_{1}$.
(2) Show that $\operatorname{ker}(\phi) \subset N_{1}$.

Answer: (1) We showed on the examination that N_{1} is a subgroup of G_{1}, so normality is the only remaining problem. Take $g_{1} \in G_{1}$ and $n_{1} \in N_{1}$, so that $\phi\left(n_{1}\right)=n_{2} \in N_{2}$, and we must show that $g_{1} n_{1} g_{1}^{-1} \in N_{1}$. We have $\phi\left(g_{1} n_{1} g_{1}^{-1}\right)=\phi\left(g_{1}\right) \phi\left(n_{1}\right) \phi\left(g_{1}\right)^{-1}=\phi\left(g_{1}\right) n_{2} \phi\left(g_{1}\right)^{-1} \in N_{2}$. Therefore, $g_{1} n_{1} g_{1}^{-1} \in N_{1}$.
(2) If $k \in \operatorname{ker}(\phi)$, then $\phi(k)=e_{2} \in N_{2}$, and therefore $k \in N_{1}$.
4. Suppose that G is a finite group with subgroups A and B. Suppose that $o(A)>o(B)>$ $\sqrt{o(G)}$. Prove that $A \cap B \neq\{e\}$.
Answer: Suppose that $A \cap B=\{e\}$. We compute the number of elements in $A B=\{a b \mid a \in$ $A, b \in B\}$. If $a_{1} b_{1}=a_{2} b_{2}$, then $a_{2}^{-1} a_{1}=b_{2} b_{1}^{-1} \in A \cap B=\{e\}$, implying that $a_{1}=a_{2}$ and $b_{1}=b_{2}$. This shows that $o(A B)=o(A) o(B)>\sqrt{o(G)} \sqrt{o(G)}=G$. But $A B \subseteq G$, so we have a contradiction. The conclusion is that $A \cap B \neq\{e\}$.
5. Suppose that G_{1} is a group, and $G=G_{1} \times G_{1}$. Let $D=\left\{(a, a) \in G: a \in G_{1}\right\}$.
(1) Show that D is a subgroup of G.
(2) Suppose that $D \triangleleft G$. Prove that G_{1} is abelian.

Answer: (1) First, $(e, e) \in D$, so D contains the identity element in G.
Second, if $(a, a),(b, b) \in D$, then $(a, a)(b, b)=(a b, a b) \in D$.
Third, if $(a, a) \in D$, then $(a, a)^{-1}=\left(a^{-1}, a^{-1}\right) \in D$.
This shows that D is a subgroup.
(2) Suppose that $D \triangleleft G$. Take two elements $a, b \in G_{1}$, and we must show that $a b=b a$. The element $(a, a) \in D$, and the element $(e, b) \in G$, and therefore $(e, b)(a, a)(e, b)^{-1} \in D$. We
compute $(e, b)(a, a)(e, b)^{-1}=\left(a, b a b^{-1}\right)$. But if $\left(a, b a b^{-1}\right) \in D$, then $a=b a b^{-1}$, or $a b=b a$, which proves that G_{1} is abelian.
6. If $M \triangleleft G, N \triangleleft G$, and $M \cap N=\{e\}$, show that for $m \in M, n \in N$, $m n=n m$. Hint: Show that $m n m^{-1} n^{-1} \in M \cap N$.
Answer: Note that $m n m^{-1} n^{-1}=\left(m n m^{-1}\right) n^{-1}$. Because $N \triangleleft G$, we have $m n m^{-1} \in N$, and therefore $\left(m n m^{-1}\right) n^{-1} \in N$.

Note as well that $m n m^{-1} n^{-1}=m\left(n m^{-1} n^{-1}\right)$. Because $M \triangleleft G$, we have $n m^{-1} n^{-1} \in M$ (because $\left.m^{-1} \in M\right)$. Therefore, $m\left(n m^{-1} n^{-1}\right) \in M$.

So $m n m^{-1} n^{-1} \in M \cap N=\{e\}$, so $m n m^{-1} n^{-1}=e$, which in turn says that $m n=n m$.
7. Recall that an automorphism of a group G is an isomorphism $\phi: G \rightarrow G$. Find all automorphisms of the group $\mathbf{Z} / 8 \mathbf{Z}$. To define an automorphism, you can show explicitly where it maps each of the 8 elements of $\mathbf{Z} / 8 \mathbf{Z}$. For example, the identity isomorphism is

$$
\begin{array}{ll}
& 0 \rightarrow 0 \\
& 1 \rightarrow 1 \\
& 2 \rightarrow 2 \\
\text { id: } & 3 \rightarrow 3 \\
& 4 \rightarrow 4 \\
& 5 \rightarrow 5 \\
& 6 \rightarrow 6 \\
& 7 \rightarrow 7
\end{array}
$$

Answer: If $\phi: \mathbf{Z} / 8 \mathbf{Z} \rightarrow \mathbf{Z} / 8 \mathbf{Z}$ is a homomorphism, we know that $\phi(0)=0$, so we only have to define ϕ for the remaining 7 elements of $\mathbf{Z} / 8 \mathbf{Z}$. We also know that if ϕ is an injection and $x \neq 0$, then $\phi(x) \neq 0$, because $\phi(0)=0$.

Now, if $\phi(1)=2$, then ϕ is not an injection, because $\phi(4)=\phi(1+1+1+1)=$ $\phi(1)+\phi(1)+\phi(1)+\phi(1)=2+2+2+2=0$. Similarly, if $\phi(1)=4$, then ϕ is not an injection, because $\phi(2)=\phi(1+1)=\phi(1)+\phi(1)=4+4=0$. Finally, if $\phi(1)=6$, then $\phi(4)=\phi(1+1+1+1)=\phi(1)+\phi(1)+\phi(1)+\phi(1)=6+6+6+6=0$.

The remaining possibilities are $\phi_{3}(1)=3$, meaning that $\phi_{3}(x)=3 x ; \phi_{5}(1)=5$, meaning $\phi_{5}(x)=5 x$; and $\phi_{7}(1)=7$, meaning $\phi_{7}(x)=7 x$. Because $\phi_{c}(x+y)=c(x+y)=$ $c x+c y=\phi_{c}(x)+\phi_{c}(y)$, we know that these three functions are homomorphisms. Because $\phi_{3} \circ \phi_{3}=\phi_{5} \circ \phi_{5}=\phi_{7} \circ \phi_{7}=\mathrm{id}$, we know that each of these three functions is invertible - in fact, each is its own inverse - and therefore each must be a bijection.

