Mathematics 310

Robert Gross
Homework 6
Due October 28, 2011

1. Suppose that G is a finite group, H a subgroup, and $o(H)=o(G) / 2$. Prove that $H \triangleleft G$. Hint: The best approach is to show that all left cosets are right cosets, and vice versa.

Hint: Remember that we proved that if $\phi: G_{1} \rightarrow G_{2}$ is a homomorphism of finite groups G_{1} to G_{2}, and $a \in G_{1}$, we proved that $o(\phi(a)) \mid o(a)$. That fact might be useful in the next few problems.
2. Show that the only homomorphism from $\mathbf{Z} / 5 \mathbf{Z}$ to $\mathbf{Z} / 8 \mathbf{Z}$ is the trivial homomorphism.
3. Show that the only homomorphism from S_{3} to $\mathbf{Z} / 3 \mathbf{Z}$ is the trivial homomorphism.
4. Let G_{1} be a finite group, and let $\phi: G_{1} \rightarrow G_{2}$ be an injective homomorphism. Let a be any element of G_{1}. Show that $o(\phi(a))=o(a)$.
5. Find a non-trivial homomorphism from $\mathbf{Z} / 3 \mathbf{Z}$ to S_{3}.

6 . Find the cycle decomposition and order.
(a) $\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 1 & 4 & 2 & 7 & 9 & 6 & 8 & 5\end{array}\right)$.
(b) $\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 5 & 3 & 4 & 2 & 1\end{array}\right)$.
(c) $\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 5 & 3 & 4 & 2 & 1\end{array}\right)\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 1 & 5 & 6 & 7 & 4\end{array}\right)$.

Classify each of these 3 permutations as even or odd.

