Mathematics 310
 Robert Gross
 Homework 6 Answers

1. Suppose that G is a finite group, H a subgroup, and $o(H)=o(G) / 2$. Prove that $H \triangleleft G$. Hint: The best approach is to show that all left cosets are right cosets, and vice versa.
Answer: Pick any element $g \in G \backslash H$. Then the two right cosets of H are H and $H g$. We know that $H \cup H g=G$ and $H \cap H g=\emptyset$. Similarly, the two left cosets of H are H and $g H$, and we know that $H \cup g H=G$ and $H \cap g H=\emptyset$.

These statements imply that $g H=H g$: If $x \in g H$, then $x \in G \backslash H$, and therefore $x \in H g$; similarly, we can start with $x \in H g$ and conclude $x \in g H$.

If every left coset of H equals a right coset of H, then H is normal.
Hint: Remember that we proved that if $\phi: G_{1} \rightarrow G_{2}$ is a homomorphism of finite groups G_{1} to G_{2}, and $a \in G_{1}$, we proved that $o(\phi(a)) \mid o(a)$. That fact might be useful in the next few problems.
2. Show that the only homomorphism from $\mathbf{Z} / 5 \mathbf{Z}$ to $\mathbf{Z} / 8 \mathbf{Z}$ is the trivial homomorphism

Answer: Suppose that $\phi: \mathbf{Z} / 5 \mathbf{Z} \rightarrow \mathbf{Z} / 8 \mathbf{Z}$. Pick any $n \in \mathbf{Z} / 5 \mathbf{Z}$. If $n=0$, then we know that $\phi(n)=0$, because $\phi\left(e_{1}\right)=e_{2}$. Suppose that $n \neq 0$. Then $o(n)=5$. We know that $o(\phi(n)) \mid o(n)$, so $o(\phi(n))$ must be 1 or 5 . But we also know that $o(\phi(n)) \mid o(\mathbf{Z} / 8 \mathbf{Z})=8$, and that implies that $o(\phi(n))=1$. This is a fancy way of writing $\phi(n)=0$, and therefore the homomorphism is trivial.
3. Show that the only homomorphism from S_{3} to $\mathbf{Z} / 3 \mathbf{Z}$ is the trivial homomorphism.

Answer: Suppose that $\phi: S_{3} \rightarrow \mathbf{Z} / 3 \mathbf{Z}$ is a homomorphism. Consider $\phi(12)$. We know that the order of (12) is 2 , and therefore $o(\phi(12)) \mid 2$. But we also know that $\phi(12) \in \mathbf{Z} / 3 \mathbf{Z}$, and therefore $o(\phi(12)) \mid 3$. The conclusion must be that $o(\phi(12))=1$, and therefore $\phi(12)=e$. Similarly, $\phi(13)=\phi(23)=e$, so the kernel of ϕ contains $e,(12)$, (23), and (13). Because the kernel is a subgroup of S_{3}, its order must divide 6 . We now have at least 4 elements in the kernel, and we can conclude that the kernel must contain 6 elements; therefore $\phi(\tau)=0$ for every $\tau \in S_{3}$.
4. Let G_{1} be a finite group, and let $\phi: G_{1} \rightarrow G_{2}$ be an injective homomorphism. Let a be any element of G_{1}. Show that $o(\phi(a))=o(a)$.
Answer: Let $n=o(a)$ and $m=o(\phi(a))$. We know that $\phi(a)^{n}=\phi\left(a^{n}\right)=\phi\left(e_{1}\right)=e_{2}$, and therefore $m \mid n$.

On the other hand, we know that $\phi\left(a^{m}\right)=\phi(a)^{m}=e_{2}$. Because ϕ is an injection, this implies that $a^{m}=e_{1}$, and therefore $n \mid m$. If $n \mid m$ and $m \mid n$, we can conclude that $m=n$.
5. Find a non-trivial homomorphism from $\mathbf{Z} / 3 \mathbf{Z}$ to S_{3}.

Answer: Suppose that $\phi: \mathbf{Z} / 3 \mathbf{Z} \rightarrow S_{3}$ is a homomorphism. We must have $\phi(0)=e$. We know that $o(1)=3$, and therefore $o(\phi(1)) \mid 3$. That means that $o(\phi(1))=1$, in which case the homomorphism is trivial, or $o(\phi(1))=3$. In that case, there are two possibilities. We could have $\phi(1)=(123)$, and then $\phi(2)=\phi(1+1)=(123)(123)=(132)$. Or we could
have $\phi(1)=(132)$, and then $\phi(2)=\phi(1+1)=(132)(132)=(123)$. Those are the only two non-trivial homomorphisms.
6. Find the cycle decomposition and order.
(a) $\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 1 & 4 & 2 & 7 & 9 & 6 & 8 & 5\end{array}\right)$.
(b) $\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 5 & 3 & 4 & 2 & 1\end{array}\right)$.
(c) $\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 5 & 3 & 4 & 2 & 1\end{array}\right)\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 1 & 5 & 6 & 7 & 4\end{array}\right)$.

Classify each of these 3 permutations as even or odd.
Answer: (a) We have $\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 1 & 4 & 2 & 7 & 9 & 6 & 8 & 5\end{array}\right)=(1342)(5769)$, and therefore this permutation has order 4 . We also have $(1342)(5769)=(12)(14)(13)(59)(56)(57)$, a product of 6 transpositions. Because 6 is an even number, this is an even transposition.
(b) We have $\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 5 & 3 & 4 & 2 & 1\end{array}\right)=(17)(26)(354)=(17)(26)(34)(35)$. We see that this permutation has order 6 , and that it is also even, because it is a product of 4 transpositions.
(c) We have $\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 5 & 3 & 4 & 2 & 1\end{array}\right)\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 1 & 5 & 6 & 7 & 4\end{array}\right)=(16)(25)(37)$. This computation shows that the order of the permutation is 2 , and that this is an odd permutation.

