Mathematics 310

Robert Gross
Homework 7
Due November 4, 2011

1. Suppose that G is a finite group with subgroups A and B. Prove that $o(A B)=$ $o(A) o(B) / o(A \cap B)$. Note that typically, $A B$ will just be a subset of G and not a subgroup.
2. If $(m, n)=1$, show that the only group homomorphism $\phi: \mathbf{Z} / m \mathbf{Z} \rightarrow \mathbf{Z} / n \mathbf{Z}$ is the trivial homomorphism. Remember that the group operation is addition.
3. Find a non-trivial group homomorphism $\phi: \mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z} \rightarrow \mathbf{Z} / 4 \mathbf{Z}$.
4. Find a non-trivial group homomorphism $\phi: \mathbf{Z} / 4 \mathbf{Z} \rightarrow \mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$.
5. Remember that the Hamiltonians \mathbf{H} are defined by $\mathbf{H}=\left\{x_{1}+i x_{2}+j x_{3}+k x_{4}\right.$: $\left.x_{1}, x_{2}, x_{3}, x_{4} \in \mathbf{R}\right\}$ with $i j=k, j k=i, k i=j$, and $i^{2}=j^{2}=k^{2}=-1$. Show there are infinitely many elements $x \in \mathbf{H}$ satisfying $x^{2}=-1$.
6. If R, S are rings, define the direct sum of R and $S, R \oplus S$, by

$$
R \oplus S=\{(r, s): r \in R, s \in S\}
$$

where $(r, s)=\left(r_{1}, s_{1}\right)$ if and only if $r=r_{1}$ and $s=s_{1}$, and where we define

$$
(r, s)+(t, u)=(r+t, s+u), \quad(r, s)(t, u)=(r t, s u)
$$

(a) Show that $R \oplus S$ is a ring.
(b) Show that $\{(r, 0): r \in R\}$ and $\{(0, s): s \in S\}$ are ideals of $R \oplus S$.
(c) Show that $\mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 3 \mathbf{Z}$ is ring isomorphic to $\mathbf{Z} / 6 \mathbf{Z}$.
(d) Show that $\mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 \mathbf{Z}$ is not ring isomorphic to $\mathbf{Z} / 4 \mathbf{Z}$.

