Mathematics 310 Robert Gross Homework 7 Due November 4, 2011

- 1. Suppose that G is a finite group with subgroups A and B. Prove that $o(AB) = o(A)o(B)/o(A \cap B)$. Note that typically, AB will just be a subset of G and not a subgroup.
- 2. If (m, n) = 1, show that the only group homomorphism $\phi : \mathbf{Z}/m\mathbf{Z} \to \mathbf{Z}/n\mathbf{Z}$ is the trivial homomorphism. Remember that the group operation is addition.
- 3. Find a non-trivial group homomorphism $\phi: \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/4\mathbb{Z}$.
- 4. Find a non-trivial group homomorphism $\phi: \mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
- 5. Remember that the Hamiltonians **H** are defined by $\mathbf{H} = \{x_1 + ix_2 + jx_3 + kx_4 : x_1, x_2, x_3, x_4 \in \mathbf{R}\}$ with ij = k, jk = i, ki = j, and $i^2 = j^2 = k^2 = -1$. Show there are infinitely many elements $x \in \mathbf{H}$ satisfying $x^2 = -1$.
- 6. If R, S are rings, define the *direct sum* of R and S, $R \oplus S$, by

$$R \oplus S = \{(r, s) : r \in R, s \in S\}$$

where $(r, s) = (r_1, s_1)$ if and only if $r = r_1$ and $s = s_1$, and where we define

$$(r,s) + (t,u) = (r+t,s+u), \quad (r,s)(t,u) = (rt,su).$$

- (a) Show that $R \oplus S$ is a ring.
- (b) Show that $\{(r,0): r \in R\}$ and $\{(0,s): s \in S\}$ are ideals of $R \oplus S$.
- (c) Show that $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$ is ring isomorphic to $\mathbb{Z}/6\mathbb{Z}$.
- (d) Show that $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ is not ring isomorphic to $\mathbb{Z}/4\mathbb{Z}$.