Mathematics 310
Robert Gross
Homework 7
Answers

1. Suppose that G is a finite group with subgroups A and B. Prove that $o(A B)=$ $o(A) o(B) / o(A \cap B)$. Note that typically, $A B$ will just be a subset of G and not a subgroup. Answer: We define the function $f: A \times B \rightarrow A B$ with $f(a, b)=a b$. The function is trivially surjective. There are $o(A) o(B)$ elements in the domain, and $o(A B)$ elements in the codomain. If $a b \in A B$, we need to find out how many elements there are in the set $f^{-1}(a b)$.

Suppose that $f(c, d)=f(a, b)$. Then we have $c d=a b$, so $a^{-1} c=b d^{-1}$. Because $a^{-1} c \in A$ and $b d^{-1} \in B$, we know that $a^{-1} c=b d^{-1} \in A \cap B$. In other words, every element in $f^{-1}(a b)$ produces an element in $A \cap B$. Can two different elements of $f^{-1}(a b)$ produce the same element of $A \cap B$? In other words, if $f(c, d)=f(a, b)=f\left(c^{\prime}, d^{\prime}\right)$, does $a^{-1} c=a^{-1} c^{\prime}$? Because of cancellation, that can happen only if $c=c^{\prime}$.

Does every element of $A \cap B$ produce an element of $f^{-1}(a b)$? Yes: If $r \in A \cap B$, then $\left(a r, r^{-1} b\right) \in f^{-1}(a b)$.

So there is a one-to-one correspondence between elements of $A \cap B$ and elements of $f^{-1}(a b)$, which shows that $o(A) o(B) / o(A \cap B)=o(A B)$.
2. If $(m, n)=1$, show that the only group homomorphism $\phi: \mathbf{Z} / m \mathbf{Z} \rightarrow \mathbf{Z} / n \mathbf{Z}$ is the trivial homomorphism. Remember that the group operation is addition.
Answer: Choose any element $a \in \mathbf{Z} / m \mathbf{Z}$. We know that $o(\phi(a)) \mid o(a)$. The corollary to Lagrange's Theorem tells us that $o(a) \mid o(\mathbf{Z} / m \mathbf{Z})$, or $o(a) \mid m$, implying that $o(\phi(a)) \mid m$. But the corollary to Lagrange's Theorem also tells us that $o(\phi(a)) \mid n$. Because $(m, n)=1$, we have $o(\phi(a))=1$, meaning that $\phi(a)=0$. Because a was arbitrary, we can conclude that ϕ is trivial.
3. Find a non-trivial group homomorphism $\phi: \mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z} \rightarrow \mathbf{Z} / 4 \mathbf{Z}$.

Answer: Remember that $o(\phi(a)) \mid o(a)$. In this case, if $a \in \mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$, and $a \neq(0,0)$, then $o(a)=2$, so we have $o(\phi(a))=1$ or 2 . There are actually 3 different non-trivial homomorphisms:

$$
\phi_{1}: \begin{aligned}
& (0,0) \rightarrow 0 \\
& (1,0) \rightarrow 2 \\
& (0,1) \rightarrow 2 \\
& (1,1) \rightarrow 0
\end{aligned} \quad \phi_{2}: \begin{aligned}
& (0,0) \rightarrow 0 \\
& (1,0) \rightarrow 2 \\
& (0,0) \rightarrow 0 \\
& (1,1) \rightarrow 2
\end{aligned} \quad \phi_{3}: \begin{aligned}
& (0,0) \rightarrow 0 \\
& (1,0) \rightarrow 0 \\
& (0,1) \rightarrow 2 \\
& (1,1) \rightarrow 2
\end{aligned}
$$

In each case, it's easy to see that $\phi(x+y)=\phi(x)+\phi(y)$, which is the requirement that ϕ must satisfy.
4. Find a non-trivial group homomorphism $\phi: \mathbf{Z} / 4 \mathbf{Z} \rightarrow \mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$.

Answer: If $\phi(1)=(0,0)$, then ϕ is trivial. Each of the other 3 possibilities gives a homomorphism:

$$
\begin{array}{lll}
& 0 \rightarrow(0,0) \\
\phi_{1}: & 0 \rightarrow(0,0) & 0 \rightarrow(0,0) \\
1 \rightarrow(1,0) \\
2 \rightarrow(0,0) \\
3 \rightarrow(1,0) & \phi_{2}: & 1 \rightarrow(0,1) \\
2 \rightarrow(0,0) \\
& 3 \rightarrow(0,1) & \phi_{3}: \\
1 \rightarrow(1,1) \\
2 \rightarrow(0,0) \\
& 3 \rightarrow(1,1)
\end{array}
$$

5. Remember that the Hamiltonians \mathbf{H} are defined by $\mathbf{H}=\left\{x_{1}+i x_{2}+j x_{3}+k x_{4}\right.$: $\left.x_{1}, x_{2}, x_{3}, x_{4} \in \mathbf{R}\right\}$ with $i j=k, j k=i, k i=j$, and $i^{2}=j^{2}=k^{2}=-1$. Show there are infinitely many elements $x \in \mathbf{H}$ satisfying $x^{2}=-1$.
Answer: To avoid the nuisance of typing subscripts, let $x=a+b i+c j+d k$, with $a, b, c, d \in \mathbf{R}$. We compute (or find from the text) that $x^{2}=a^{2}-b^{2}-c^{2}-d^{2}+2 a b i+2 a c j+2 a d k$. If we set this equal to -1 , we conclude that

$$
\begin{aligned}
a^{2}-b^{2}-c^{2}-d^{2} & =-1 \\
2 a b & =0 \\
2 a c & =0 \\
2 a d & =0
\end{aligned}
$$

Now, if $a \neq 0$, we are forced to conclude from the final three equations that $b=c=d=0$, and then $a^{2}=-1$ has no solutions.

However, if we set $a=0$, then the final three equations are automatically satisfied, and we are left with $b^{2}+c^{2}+d^{2}=1$. This equation has infinitely many solutions-for example, set $b=\cos \theta$ and $c=\sin \theta$ and $d=0$ - and each solution will imply that $x^{2}=-1$.
6. If R, S are rings, define the direct sum of R and $S, R \oplus S$, by

$$
R \oplus S=\{(r, s): r \in R, s \in S\}
$$

where $(r, s)=\left(r_{1}, s_{1}\right)$ if and only if $r=r_{1}$ and $s=s_{1}$, and where we define

$$
(r, s)+(t, u)=(r+t, s+u), \quad(r, s)(t, u)=(r t, s u)
$$

(a) Show that $R \oplus S$ is a ring.
(b) Show that $\{(r, 0): r \in R\}$ and $\{(0, s): s \in S\}$ are ideals of $R \oplus S$.
(c) Show that $\mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 3 \mathbf{Z}$ is ring isomorphic to $\mathbf{Z} / 6 \mathbf{Z}$.
(d) Show that $\mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 \mathbf{Z}$ is not ring isomorphic to $\mathbf{Z} / 4 \mathbf{Z}$.

Answer: (a) First, the identity element for addition is $\left(0_{R}, 0_{S}\right)$, and the identity element for multiplication is $\left(1_{R}, 1_{S}\right)$. Second, we see that $\left(r_{1}, s_{1}\right)+\left(r_{2}, s_{2}\right)=\left(r_{1}+r_{2}, s_{1}+s_{2}\right)=$ $\left(r_{2}+r_{1}, s_{2}+s_{1}\right)=\left(r_{2}, s_{2}\right)+\left(r_{1}, s_{1}\right)$, showing that addition is commutative; the demonstration that addition is associative is similar.

Third, we check the distributive law: $\left(r_{1}, s_{1}\right)\left(\left(r_{2}, s_{2}\right)+\left(r_{3}, s_{3}\right)\right)=\left(r_{1}, s_{1}\right)\left(r_{2}+r_{3}, s_{2}+\right.$ $\left.s_{3}\right)=\left(r_{1}\left(r_{2}+r_{3}\right), s_{1}\left(s_{2}+s_{3}\right)\right)=\left(r_{1} r_{2}+r_{1} r_{3}, s_{1} s_{2}+s_{1} s_{3}\right)=\left(r_{1} r_{2}, s_{1} s_{2}\right)+\left(r_{1} r_{3}, s_{1} s_{3}\right)=$ $\left.\left(r_{1}, s_{1}\right)\left(r_{2}, s_{2}\right)+\left(r_{1}, s_{1}\right)\left(r_{3}, s_{3}\right)\right)$. The distributive law on the right side is checked similarly.
(b) We have $\left(r_{1}, 0\right)+\left(r_{2}, 0\right)=\left(r_{1}+r_{2}, 0\right)$, showing that the set is closed under addition. We also have $\left(r_{1}, 0\right)\left(r_{2}, s_{2}\right)=\left(r_{1} r_{2}, 0 s_{2}\right)=\left(r_{1} r_{2}, 0\right)$, which again is in the set. Therefore, the set is an ideal. The demonstration is exactly the same for the other ideal.
(c) Remember that we insist that if $\phi: R_{1} \rightarrow R_{2}$ is a homomorphism, then $\phi\left(1_{R_{1}}\right)=1_{R_{2}}$. Therefore, a homomorphism ϕ from $\mathbf{Z} / 6 \mathbf{Z}$ to $\mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 3 \mathbf{Z}$ must satisfy $\phi(1)=(1,1)$. Therefore, the only homomorphism is

$$
\phi: \begin{aligned}
& 0 \rightarrow(0,0) \\
& \\
& 1 \rightarrow(1,1) \\
& 2 \rightarrow(0,2) \\
& 3 \rightarrow(1,0) \\
& 4 \rightarrow(0,1) \\
& \\
& 5 \rightarrow(1,2)
\end{aligned}
$$

and this is obviously a bijection.
(d) Suppose that $\phi: \mathbf{Z} / 4 \mathbf{Z} \rightarrow \mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 \mathbf{Z}$ is a homomorphism. The requirement that $\phi\left(1_{R_{1}}\right)=1_{R_{2}}$ again gives no choice about the function:

$$
\phi: \begin{aligned}
& 0 \rightarrow(0,0) \\
& 1 \rightarrow(1,1) \\
& 2 \rightarrow(0,0) \\
& 3 \rightarrow(1,1)
\end{aligned}
$$

This is obviously neither an injection nor a surjection, so it is not an isomorphism.

