
Mathematics 310
Robert Gross
Homework 7

Answers

1. Suppose that G is a finite group with subgroups A and B. Prove that o(AB) =
o(A)o(B)/o(A ∩B). Note that typically, AB will just be a subset of G and not a subgroup.
Answer : We define the function f : A×B → AB with f(a, b) = ab. The function is trivially
surjective. There are o(A)o(B) elements in the domain, and o(AB) elements in the codomain.
If ab ∈ AB, we need to find out how many elements there are in the set f−1(ab).

Suppose that f(c, d) = f(a, b). Then we have cd = ab, so a−1c = bd−1. Because a−1c ∈ A
and bd−1 ∈ B, we know that a−1c = bd−1 ∈ A ∩B. In other words, every element in f−1(ab)
produces an element in A ∩ B. Can two different elements of f−1(ab) produce the same
element of A∩B? In other words, if f(c, d) = f(a, b) = f(c′, d′), does a−1c = a−1c′? Because
of cancellation, that can happen only if c = c′.

Does every element of A ∩ B produce an element of f−1(ab)? Yes: If r ∈ A ∩ B, then
(ar, r−1b) ∈ f−1(ab).

So there is a one-to-one correspondence between elements of A∩B and elements of f−1(ab),
which shows that o(A)o(B)/o(A ∩B) = o(AB).

2. If (m,n) = 1, show that the only group homomorphism φ : Z/mZ→ Z/nZ is the trivial
homomorphism. Remember that the group operation is addition.
Answer : Choose any element a ∈ Z/mZ. We know that o(φ(a))|o(a). The corollary to
Lagrange’s Theorem tells us that o(a)|o(Z/mZ), or o(a)|m, implying that o(φ(a))|m. But
the corollary to Lagrange’s Theorem also tells us that o(φ(a))|n. Because (m,n) = 1, we
have o(φ(a)) = 1, meaning that φ(a) = 0. Because a was arbitrary, we can conclude that φ is
trivial.

3. Find a non-trivial group homomorphism φ : Z/2Z× Z/2Z→ Z/4Z.
Answer : Remember that o(φ(a))|o(a). In this case, if a ∈ Z/2Z × Z/2Z, and a 6= (0, 0),
then o(a) = 2, so we have o(φ(a)) = 1 or 2. There are actually 3 different non-trivial
homomorphisms:

φ1 :

(0, 0)→ 0
(1, 0)→ 2
(0, 1)→ 2
(1, 1)→ 0

φ2 :

(0, 0)→ 0
(1, 0)→ 2
(0, 0)→ 0
(1, 1)→ 2

φ3 :

(0, 0)→ 0
(1, 0)→ 0
(0, 1)→ 2
(1, 1)→ 2

In each case, it’s easy to see that φ(x+ y) = φ(x) + φ(y), which is the requirement that φ
must satisfy.

4. Find a non-trivial group homomorphism φ : Z/4Z→ Z/2Z× Z/2Z.
Answer : If φ(1) = (0, 0), then φ is trivial. Each of the other 3 possibilities gives a homomor-
phism:

φ1 :

0→ (0, 0)
1→ (1, 0)
2→ (0, 0)
3→ (1, 0)

φ2 :

0→ (0, 0)
1→ (0, 1)
2→ (0, 0)
3→ (0, 1)

φ3 :

0→ (0, 0)
1→ (1, 1)
2→ (0, 0)
3→ (1, 1)



5. Remember that the Hamiltonians H are defined by H = {x1 + ix2 + jx3 + kx4 :
x1, x2, x3, x4 ∈ R} with ij = k, jk = i, ki = j, and i2 = j2 = k2 = −1. Show there
are infinitely many elements x ∈ H satisfying x2 = −1.
Answer : To avoid the nuisance of typing subscripts, let x = a+bi+cj+dk, with a, b, c, d ∈ R.
We compute (or find from the text) that x2 = a2 − b2 − c2 − d2 + 2abi+ 2acj + 2adk. If we
set this equal to −1, we conclude that

a2 − b2 − c2 − d2 = −1
2ab = 0
2ac = 0
2ad = 0

Now, if a 6= 0, we are forced to conclude from the final three equations that b = c = d = 0,
and then a2 = −1 has no solutions.

However, if we set a = 0, then the final three equations are automatically satisfied, and we
are left with b2 + c2 + d2 = 1. This equation has infinitely many solutions—for example, set
b = cos θ and c = sin θ and d = 0—and each solution will imply that x2 = −1.

6. If R, S are rings, define the direct sum of R and S, R⊕ S, by
R⊕ S = {(r, s) : r ∈ R, s ∈ S}

where (r, s) = (r1, s1) if and only if r = r1 and s = s1, and where we define
(r, s) + (t, u) = (r + t, s+ u), (r, s)(t, u) = (rt, su).

(a) Show that R⊕ S is a ring.
(b) Show that {(r, 0) : r ∈ R} and {(0, s) : s ∈ S} are ideals of R⊕ S.
(c) Show that Z/2Z⊕ Z/3Z is ring isomorphic to Z/6Z.
(d) Show that Z/2Z⊕ Z/2Z is not ring isomorphic to Z/4Z.

Answer : (a) First, the identity element for addition is (0R, 0S), and the identity element
for multiplication is (1R, 1S). Second, we see that (r1, s1) + (r2, s2) = (r1 + r2, s1 + s2) =
(r2 + r1, s2 + s1) = (r2, s2) + (r1, s1), showing that addition is commutative; the demonstration
that addition is associative is similar.

Third, we check the distributive law: (r1, s1)((r2, s2) + (r3, s3)) = (r1, s1)(r2 + r3, s2 +
s3) = (r1(r2 + r3), s1(s2 + s3)) = (r1r2 + r1r3, s1s2 + s1s3) = (r1r2, s1s2) + (r1r3, s1s3) =
(r1, s1)(r2, s2) + (r1, s1)(r3, s3)). The distributive law on the right side is checked similarly.

(b) We have (r1, 0) + (r2, 0) = (r1 + r2, 0), showing that the set is closed under addition.
We also have (r1, 0)(r2, s2) = (r1r2, 0s2) = (r1r2, 0), which again is in the set. Therefore, the
set is an ideal. The demonstration is exactly the same for the other ideal.

(c) Remember that we insist that if φ : R1 → R2 is a homomorphism, then φ(1R1) = 1R2 .
Therefore, a homomorphism φ from Z/6Z to Z/2Z ⊕ Z/3Z must satisfy φ(1) = (1, 1).
Therefore, the only homomorphism is

φ :

0→ (0, 0)
1→ (1, 1)
2→ (0, 2)
3→ (1, 0)
4→ (0, 1)
5→ (1, 2)



and this is obviously a bijection.
(d) Suppose that φ : Z/4Z→ Z/2Z⊕ Z/2Z is a homomorphism. The requirement that

φ(1R1) = 1R2 again gives no choice about the function:

φ :

0→ (0, 0)
1→ (1, 1)
2→ (0, 0)
3→ (1, 1)

This is obviously neither an injection nor a surjection, so it is not an isomorphism.


