Mathematics 310 Robert Gross Homework 8 Due November 18, 2011

In all of these problems, F is a field.

1. Let $f = x^3 + 1$ and $g = 2x^4 + 3$ be polynomials in \mathbf{F}_7 . Let d = (f, g). Use the Euclidean algorithm to find d and to find polynomials a and b so that af + bg = d. Note: Remember that d is monic.

2. Suppose that $f, g, h \in F[x]$, with (f, g) = 1, f|h, and g|h. Prove that fg|h.

3. Let I = (f) and J = (g) be ideals in F[x]. Show that $I \subset J$ if and only if g|f.

4. Suppose that K and L are fields, with $K \subset L$ and $f, g \in K[x]$. Suppose that f and g are relatively prime as elements of K[x]. Prove that f and g remain relatively prime when considered as elements of L[x].

5. Suppose that I and J are ideals in a commutative ring R. Define $I + J = \{i + j : i \in I, j \in J\}$.

(a) Show that I + J is an ideal of R.

(b) Show that $I \cap J$ is an ideal of R.

6. Suppose that I and J are ideals of **Z**, with I = (m) and J = (n).

(a) Let r = [m, n], the least common multiple of m and n. Show that $I \cap J = (r)$.

(b) Let d = (m, n). Show that I + J = (d).