Mathematics 310
Robert Gross
Homework 8
Due November 18, 2011
In all of these problems, F is a field.

1. Let $f=x^{3}+1$ and $g=2 x^{4}+3$ be polynomials in \mathbf{F}_{7}. Let $d=(f, g)$. Use the Euclidean algorithm to find d and to find polynomials a and b so that $a f+b g=d$. Note: Remember that d is monic.
2. Suppose that $f, g, h \in F[x]$, with $(f, g)=1, f \mid h$, and $g \mid h$. Prove that $f g \mid h$.
3. Let $I=(f)$ and $J=(g)$ be ideals in $F[x]$. Show that $I \subset J$ if and only if $g \mid f$.
4. Suppose that K and L are fields, with $K \subset L$ and $f, g \in K[x]$. Suppose that f and g are relatively prime as elements of $K[x]$. Prove that f and g remain relatively prime when considered as elements of $L[x]$.
5. Suppose that I and J are ideals in a commutative ring R. Define $I+J=\{i+j: i \in$ $I, j \in J\}$.
(a) Show that $I+J$ is an ideal of R.
(b) Show that $I \cap J$ is an ideal of R.
6. Suppose that I and J are ideals of \mathbf{Z}, with $I=(m)$ and $J=(n)$.
(a) Let $r=[m, n]$, the least common multiple of m and n. Show that $I \cap J=(r)$.
(b) Let $d=(m, n)$. Show that $I+J=(d)$.
