Mathematics 310 Robert Gross Homework 8 Answers

In all of these problems, F is a field.

1. Let $f = x^3 + 1$ and $g = 2x^4 + 3$ be polynomials in \mathbf{F}_7 . Let d = (f, g). Use the Euclidean algorithm to find d and to find polynomials a and b so that af + bg = d. Note: Remember that d is monic.

Answer: We start by dividing $x^3 + 1$ into $2x^4 + 3$. We see that the quotient is 2x, and $2x^4 + 3 = (2x)(x^3+1)+(5x+3)$. Now, divide 5x+3 into x^3+1 , and we get $x^3+1 = (5x+3)(3x^2+x+5)$. Therefore, a greatest common divisor is 5x+3, and we have $5x+3 = (1)(2x^4+3)+(5x)(x^3+1)$. However, we require that the greatest common divisor be monic, so we must multiply this equation by 3, yielding $x+2 = (3)(2x^4+3)+(x)(x^3+1)$.

2. Suppose that $f, g, h \in F[x]$, with (f, g) = 1, f|h, and g|h. Prove that fg|h. Answer: Write 1 = af + bg. Multiply by h, and we have h = afh + bgh. Now, g|h and so fg|afh. Similarly, f|h, so fg|bgh. Therefore, fg|h.

3. Let I = (f) and J = (g) be ideals in F[x]. Show that $I \subset J$ if and only if g|f.

Answer: (a) Suppose first that g|f. Write f = qg. Take any element $h \in I$. We know that h = pf because I = (f). Then h = pqg, so $h \in (g) = J$. Therefore $I \subset J$.

(b) Suppose instead that $I \subset J$. Because $f \in I$, we know that $f \in J$, and therefore f = qg. Therefore, g|f.

4. Suppose that K and L are fields, with $K \subset L$ and $f, g \in K[x]$. Suppose that f and g are relatively prime as elements of K[x]. Prove that f and g remain relatively prime when considered as elements of L[x].

Answer: Because f and g are relatively prime, we can find polynomials $a, b \in K[x]$ so that af + bg = 1. Now, suppose that $d \in L[x]$ divides by f and g. The equation af + bg = 1 shows that d|1, and therefore $d \in L$. This shows that f and g are still relatively prime when considered as elements of L[x].

5. Suppose that I and J are ideals in a commutative ring R. Define $I + J = \{i + j : i \in I, j \in J\}$.

- (a) Show that I + J is an ideal of R.
- (b) Show that $I \cap J$ is an ideal of R.

Answer: (a) Take $i_1 + j_1, i_2 + j_2 \in I + J$. Then $(i_1 + j_1) + (i_2 + j_2) = (i_1 + i_2) + (j_1 + j_2) \in I + J$, so I + J is closed under multiplication. Now take $r \in R$, and then $r(i_1 + j_1) = ri_1 + rj_1 \in I + J$, so I + J has the correct multiplicative property, making I + J an ideal.

(b) Take $r_1, r_2 \in I \cap J$. Then $r_1, r_2 \in I$, so $r_1 + r_2 \in I$, and similarly $r_1 + r_2 \in J$, so $r_1 + r_2 \in I \cap J$. Take $r \in r$, and then $rr_1 \in I$ because I is an ideal, and similarly $rr_1 \in J$ because J is an ideal. Therefore $rr_1 \in I \cap J$, making $I \cap J$ an ideal.

6. Suppose that I and J are ideals of **Z**, with I = (m) and J = (n).

(a) Let r = [m, n], the least common multiple of m and n. Show that $I \cap J = (r)$.

(b) Let d = (m, n). Show that I + J = (d).

Answer: (a) We know that we can write $I \cap J = (t)$, where t is the smallest positive element in $I \cap J$. We know that $I \cap J \subset I$, and so a problem above tells us that m|t. Similarly, we know that $I \cap J \subset J$, so n|t. Therefore, [m, n]|t. However, it is also clear that $[m, n] \in I \cap J$, so $I \cap J = ([m, n])$.

(b) We know that we can find integers x and y so that mx + ny = d. Because $mx \in I$ and $ny \in J$, we know that $d \in I + J$.

On the other hand, take any element $p \in I + J$, and we know that we can write p = mr + ns. Because d|m and d|n, we know that d|p. Therefore I + J = (d).