Mathematics 310
Robert Gross
Homework 8
Answers

In all of these problems, F is a field.

1. Let $f=x^{3}+1$ and $g=2 x^{4}+3$ be polynomials in \mathbf{F}_{7}. Let $d=(f, g)$. Use the Euclidean algorithm to find d and to find polynomials a and b so that $a f+b g=d$. Note: Remember that d is monic.
Answer: We start by dividing $x^{3}+1$ into $2 x^{4}+3$. We see that the quotient is $2 x$, and $2 x^{4}+3=$ $(2 x)\left(x^{3}+1\right)+(5 x+3)$. Now, divide $5 x+3$ into $x^{3}+1$, and we get $x^{3}+1=(5 x+3)\left(3 x^{2}+x+5\right)$. Therefore, a greatest common divisor is $5 x+3$, and we have $5 x+3=(1)\left(2 x^{4}+3\right)+(5 x)\left(x^{3}+1\right)$. However, we require that the greatest common divisor be monic, so we must multiply this equation by 3 , yielding $x+2=(3)\left(2 x^{4}+3\right)+(x)\left(x^{3}+1\right)$.
2. Suppose that $f, g, h \in F[x]$, with $(f, g)=1, f \mid h$, and $g \mid h$. Prove that $f g \mid h$.

Answer: Write $1=a f+b g$. Multiply by h, and we have $h=a f h+b g h$. Now, $g \mid h$ and so $f g \mid a f h$. Similarly, $f \mid h$, so $f g \mid b g h$. Therefore, $f g \mid h$.
3. Let $I=(f)$ and $J=(g)$ be ideals in $F[x]$. Show that $I \subset J$ if and only if $g \mid f$.

Answer: (a) Suppose first that $g \mid f$. Write $f=q g$. Take any element $h \in I$. We know that $h=p f$ because $I=(f)$. Then $h=p q g$, so $h \in(g)=J$. Therefore $I \subset J$.
(b) Suppose instead that $I \subset J$. Because $f \in I$, we know that $f \in J$, and therefore $f=q g$. Therefore, $g \mid f$.
4. Suppose that K and L are fields, with $K \subset L$ and $f, g \in K[x]$. Suppose that f and g are relatively prime as elements of $K[x]$. Prove that f and g remain relatively prime when considered as elements of $L[x]$.
Answer: Because f and g are relatively prime, we can find polynomials $a, b \in K[x]$ so that $a f+b g=1$. Now, suppose that $d \in L[x]$ divides by f and g. The equation $a f+b g=1$ shows that $d \mid 1$, and therefore $d \in L$. This shows that f and g are still relatively prime when considered as elements of $L[x]$.
5. Suppose that I and J are ideals in a commutative ring R. Define $I+J=\{i+j: i \in$ $I, j \in J\}$.
(a) Show that $I+J$ is an ideal of R.
(b) Show that $I \cap J$ is an ideal of R.

Answer: (a) Take $i_{1}+j_{1}, i_{2}+j_{2} \in I+J$. Then $\left(i_{1}+j_{1}\right)+\left(i_{2}+j_{2}\right)=\left(i_{1}+i_{2}\right)+\left(j_{1}+j_{2}\right) \in I+J$, so $I+J$ is closed under multiplication. Now take $r \in R$, and then $r\left(i_{1}+j_{1}\right)=r i_{1}+r j_{1} \in I+J$, so $I+J$ has the correct multiplicative property, making $I+J$ an ideal.
(b) Take $r_{1}, r_{2} \in I \cap J$. Then $r_{1}, r_{2} \in I$, so $r_{1}+r_{2} \in I$, and similarly $r_{1}+r_{2} \in J$, so $r_{1}+r_{2} \in I \cap J$. Take $r \in r$, and then $r r_{1} \in I$ because I is an ideal, and similarly $r r_{1} \in J$ because J is an ideal. Therefore $r r_{1} \in I \cap J$, making $I \cap J$ an ideal.
6. Suppose that I and J are ideals of \mathbf{Z}, with $I=(m)$ and $J=(n)$.
(a) Let $r=[m, n]$, the least common multiple of m and n. Show that $I \cap J=(r)$.
(b) Let $d=(m, n)$. Show that $I+J=(d)$.

Answer: (a) We know that we can write $I \cap J=(t)$, where t is the smallest positive element in $I \cap J$. We know that $I \cap J \subset I$, and so a problem above tells us that $m \mid t$. Similarly, we know that $I \cap J \subset J$, so $n \mid t$. Therefore, $[m, n] \mid t$. However, it is also clear that $[m, n] \in I \cap J$, so $I \cap J=([m, n])$.
(b) We know that we can find integers x and y so that $m x+n y=d$. Because $m x \in I$ and $n y \in J$, we know that $d \in I+J$.

On the other hand, take any element $p \in I+J$, and we know that we can write $p=m r+n s$. Because $d \mid m$ and $d \mid n$, we know that $d \mid p$. Therefore $I+J=(d)$.

