Mathematics 310

Robert Gross
Homework 9
Due November 28, 2011

1. Suppose that F is a field. Let

$$
\begin{aligned}
R & =\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \right\rvert\, a, b, c \in F\right\} \\
I & =\left\{\left.\left(\begin{array}{ll}
0 & d \\
0 & 0
\end{array}\right) \right\rvert\, d \in F\right\}
\end{aligned}
$$

Show that
(a) R is a ring.
(b) I is an ideal of R.
(c) The function $\phi: R \rightarrow F \oplus F$ defined by $\phi\left(\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)\right)=(a, c)$ is a ring homomorphism with kernel I.
2. Let p be a prime. Show that the polynomial $x^{p-1}+x^{p-2}+\cdots+x+1$ is irreducible in $\mathbf{Q}[x]$.
3. Suppose that K and L are two fields, with $K \subset L$. Suppose that $\operatorname{dim}_{K}(L)=n$. Let $a \in K$. Show that there are elements $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}$ of K, not all zero, so that $\sum_{k=0}^{n} \alpha_{k} a^{k}=0$.
4. Let F be a field, let $f(x) \in F[x]$ be an irreducible polynomial, and suppose $\operatorname{deg}(f)=n \geq 1$. Let $M=(f(x))$, and let $K=F[x] / M$. We know that K is a field containing F. Show that $\operatorname{dim}_{F}(K)=n$.
5. Suppose that F is a field, R is a ring, and $\phi: F \rightarrow R$ is a surjective ring homomorphism. Show that ϕ is a bijection, and that R is a field.
6. Show that $\mathbf{R} \oplus \mathbf{R}$ is not ring isomorphic to \mathbf{C}.

