Mathematics 310

Robert Gross
Homework 9
Answers

1. Suppose that F is a field. Let

$$
\begin{aligned}
R & =\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \right\rvert\, a, b, c \in F\right\} \\
I & =\left\{\left.\left(\begin{array}{ll}
0 & d \\
0 & 0
\end{array}\right) \right\rvert\, d \in F\right\}
\end{aligned}
$$

Show that
(a) R is a ring.
(b) I is an ideal of R.
(c) The function $\phi: R \rightarrow F \oplus F$ defined by $\phi\left(\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)\right)=(a, c)$ is a ring homomorphism with kernel I.

Answer: (a) We need to verify that R is closed under matrix addition and multiplication to show that R is a ring. Addition is obvious. For multiplication, we have

$$
\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)\left(\begin{array}{ll}
d & e \\
0 & f
\end{array}\right)=\left(\begin{array}{cc}
a d & a e+b f \\
0 & c f
\end{array}\right) \in R
$$

(b) We need to see that I is closed under addition (which is clear), and that if $r \in R$ and $j \in I$, then $r j, j r \in I$. We have

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)\left(\begin{array}{ll}
0 & d \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & a d \\
0 & 0
\end{array}\right) \in I \\
& \left(\begin{array}{ll}
0 & d \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)=\left(\begin{array}{cc}
0 & c d \\
0 & 0
\end{array}\right) \in I
\end{aligned}
$$

(c) We have

$$
\begin{aligned}
\phi\left(\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)+\left(\begin{array}{ll}
d & e \\
0 & f
\end{array}\right)\right) & =\phi\left(\left(\begin{array}{cc}
a+d & b+e \\
0 & c+f
\end{array}\right)\right)=(a+d, c+f)=(a, c)+(d, f) \\
& =\phi\left(\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)\right)+\phi\left(\left(\begin{array}{ll}
d & e \\
0 & f
\end{array}\right)\right) \\
\phi\left(\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)\left(\begin{array}{ll}
d & e \\
0 & f
\end{array}\right)\right) & =\phi\left(\left(\begin{array}{cc}
a d & a e+b f \\
0 & c f
\end{array}\right)\right)=(a d, c f)=(a, c)(d, f) \\
& =\phi\left(\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)\right) \phi\left(\left(\begin{array}{ll}
d & e \\
0 & f
\end{array}\right)\right)
\end{aligned}
$$

These computations show that ϕ is a ring homomorphism. The kernel is the set of matrices so that $\phi\left(\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)\right)=0$, meaning that $(a, c)=(0,0)$, so $a=c=0$, and then the kernel consists of matrices $\left(\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right)$, which is exactly the definition of I.
2. Let p be a prime. Show that the polynomial $x^{p-1}+x^{p-2}+\cdots+x+1$ is irreducible in $\mathbf{Q}[x]$. Answer: We know that $\left(x^{n}-1\right) /(x-1)=x^{n-1}+x^{n-2}+\cdots+x+1$ for any n, so in particular $\left(x^{p}-1\right) /(x-1)=x^{p-1}+x^{p-2}+\cdots+x+1$. Let $x=y+1$, so $\left((y+1)^{p}-1\right) / y=$ $(y+1)^{p-1}+(y+1)^{p-2}+\cdots+(y+1)+1$.

Now, $(y+1)^{p}=y^{p}+\binom{p}{1} y^{p-1}+\binom{p}{2} y^{p-2}+\cdots p y+1$, and because $p \left\lvert\,\binom{ p}{k}\right.$ if $1 \leq k \leq p-1$, we can apply the Eisenstein Criterion to see that $\frac{(y+1)^{p}-1}{y}$ is irreducible. Therefore, our given polynomial is also irreducible.
3. Suppose that K and L are two fields, with $K \subset L$. Suppose that $\operatorname{dim}_{K}(L)=n$. Let $a \in K$. Show that there are elements $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}$ of K, not all zero, so that $\sum_{k=0}^{n} \alpha_{k} a^{k}=0$. Answer: There are $n+1$ elements in the set $\left\{1, a, a^{2}, \ldots, a^{n}\right\}$, so that set must be linearly dependent. Therefore, we can find a non-trivial linear combination of those elements which sums to 0 .
4. Let F be a field, let $f(x) \in F[x]$ be an irreducible polynomial, and suppose $\operatorname{deg}(f)=n \geq 1$. Let $M=(f(x))$, and let $K=F[x] / M$. We know that K is a field containing F. Show that $\operatorname{dim}_{F}(K)=n$.
Answer: Given any elements $g(x) \in F[x]$, we know that we can write $g(x)=q(x) f(x)+r(x)$, where $r=0$ or $\operatorname{deg} r<n$. Therefore, the coset $g(x)+M=r(x)+M$, and so any non-zero coset in $F[x] / M$ can be written as a polynomial of degree less than n. In other words, the n elements $\left\{1, x, \ldots, x^{n-1}\right\}$ span $F[x] / M$.

We now need to show linear independence. Suppose that $b_{0}+b_{1} x+\cdots+b_{n-1} x^{n-1}=$ $0 \in F[x] / M$ for some $b_{0}, b_{1}, \ldots, b_{n-1} \in F$. Let $g(x)=b_{0}+b_{1} x+\cdots+b_{n-1} x^{n-1}$. We have supposed that $g(x) \in M$.

We know that $f(x)$ is irreducible, so $(f, g)=1$. Find polynomials $h, k \in F[x]$ so that $h f+k g=1$. Then on the one hand, $h f+k g+M=1+M$ but on the other hand, $f \in M$ so $h f \in M$, and $g \in M$, so $k g \in M$, and then $h f+k g \in M$, implying that $1 \in M$, which is a contradiction.

Therefore, the set $\left\{1, x, \ldots, x^{n-1}\right\}$ is a basis of K over F, showing that $[K: F]=n$.
5. Suppose that F is a field, R is a ring, and $\phi: F \rightarrow R$ is a surjective ring homomorphism. Show that ϕ is a bijection, and that R is a field.
Answer: The only ideals of a field are 0 and F. We know that $\phi\left(1_{F}\right)=1_{R}$, so the kernel of ϕ cannot be F. Therefore, the kernel is 0 , and so ϕ is an injection. We are given that ϕ is a surjection, so it must be a bijection.

Now, if $r \in R$ is any non-zero element in R, we can find $s \in F$ so that $\phi(s)=r$ and $s \neq 0$, and then $\phi\left(s^{-1}\right)=r^{-1}$, showing that every non-zero element in R has an inverse.
6. Show that $\mathbf{R} \oplus \mathbf{R}$ is not ring isomorphic to \mathbf{C}.

Answer: Suppose that $\phi: \mathbf{R} \oplus \mathbf{R} \rightarrow \mathbf{C}$ is a ring isomorphism. The multiplicative identity element in $\mathbf{R} \oplus \mathbf{R}$ is $(1,1)$, so we must have $\phi(1,1)=1$. We also have $\phi(0,0)=0$. Now, suppose that $\phi(1,0)=a \in \mathbf{C}$, where $a \neq 0,1$, because ϕ is an injection. But $\phi(1,0)=\phi((1,0)(1,0))=\phi(1,0)^{2}=a^{2}$, so we must have $a^{2}=a$. The only solutions in \mathbf{C} to $a^{2}=a$ are $a=0$ or $a=1$. This is a contradiction.

