Mathematics 310

Robert Gross
Homework 10
Due December 5, 2011

1. Show that there is no ring homomorphism $\phi: \mathbf{C} \rightarrow \mathbf{R} \oplus \mathbf{R}$.
2. Find a ring homomorphism $\phi: \mathbf{R} \oplus \mathbf{R} \rightarrow \mathbf{C}$.
3. Find the minimal polynomial in $\mathbf{Q}[x]$ for $\sqrt{2}+\sqrt[3]{7}$.
4. Suppose that E is a field containing q elements, and $E \subset F$. Suppose that F is a field, with $[F: E]=n$. Show that F contains q^{n} elements.
5. Suppose that $E \subset F$, where E and F are fields, and suppose as well that $[E: F]=p$, where p is a prime. Let a be any element of $F \backslash E$. Show that $F=E(a)$.
6. Degrees do not always behave the way that we would hope. Find two numbers a and b which are algebraic over \mathbf{Q} with $[\mathbf{Q}(a): \mathbf{Q}]=2,[\mathbf{Q}(b): \mathbf{Q}]=3$, but the degree of the minimal polynomial for $a b$ is less than 6 .
