Mathematics 310
Robert Gross
Homework 10
Answers

1. Show that there is no ring homomorphism $\phi: \mathbf{C} \rightarrow \mathbf{R} \oplus \mathbf{R}$.

Answer: Suppose that there is such a homomorphism ϕ. Then $\phi(1)=(1,1)$, by our definition of ring homomorphism, and therefore $\phi(-1)=(-1,-1)$. Suppose that $\phi(i)=(a, b)$. Then $\left(a^{2}, b^{2}\right)=\phi\left(i^{2}\right)=\phi(-1)=(-1,-1)$, forcing $a^{2}=b^{2}=-1$. Because that is not possible if $a, b \in \mathbf{R}$, we know that there is no homomorphism.
2. Find a ring homomorphism $\phi: \mathbf{R} \oplus \mathbf{R} \rightarrow \mathbf{C}$.

Answer: One possibility is $\phi(a, b)=a$; another is $\phi(a, b)=b$.
3. Find the minimal polynomial in $\mathbf{Q}[x]$ for $\sqrt{2}+\sqrt[3]{7}$.

Answer: Let $x=\sqrt{2}+\sqrt[3]{7}$. Then $x-\sqrt{2}=\sqrt[3]{7}$, and so $7=(x-\sqrt{2})^{3}=x^{3}-3 \sqrt{2} x^{2}+6 x-2 \sqrt{2}$. Rearranging, we get $x^{3}+6 x-7=\sqrt{2}\left(3 x^{2}+2\right)$. Now, squaring gives $x^{6}+36 x^{2}+49+12 x^{4}-14 x^{3}-$ $84 x=2\left(9 x^{4}+12 x^{2}+4\right)=18 x^{4}+24 x^{2}+8$. Rearranging yields $x^{6}-6 x^{4}-14 x^{3}+12 x^{2}-84 x+41=$ 0 .
4. Suppose that E is a field containing q elements, and $E \subset F$. Suppose that F is a field, with $[F: E]=n$. Show that F contains q^{n} elements.
Answer: If $[F: E]=n$, then there is a basis $\left\{x_{1}, \ldots, x_{n}\right\}$ of F over E. In other words, every element of F can be uniquely written in the form $e_{1} x_{1}+\cdots+e_{n} x_{n}$, where $e_{1}, e_{2}, \ldots, e_{n} \in E$. Because there are q possibilities for each of the elements e_{1}, \ldots, e_{n}, we know that there are q^{n} elements in F.
5. Suppose that $E \subset F$, where E and F are fields, and suppose as well that $[E: F]=p$, where p is a prime. Let a be any element of $F \backslash E$. Show that $F=E(a)$.
Answer: If a is an element of F which is not in E, then the field $E(a)$ is a field which contains E but does not equal E. We have $E \subset E(a) \subset F$, and therefore $p=[F: E]=[F$: $E(a)][E(a): E]$. However, primes have a limited number of factors. Because $[E(a): E] \neq 1$, we know that $[E(a): E]=p$, and therefore $[F: E(a)]=1$, meaning that $F=E(a)$.
6. Degrees do not always behave the way that we would hope. Find two numbers a and b which are algebraic over \mathbf{Q} with $[\mathbf{Q}(a): \mathbf{Q}]=2,[\mathbf{Q}(b): \mathbf{Q}]=3$, but the degree of the minimal polynomial for $a b$ is less than 6.
Answer: This is hard to find without some thought. The trick is to make $a b$ solve the same minimal polynomial as b. So one possibility is to take $b=\sqrt[3]{2}$, with minimal polynomial $x^{3}-2$. The other roots of this polynomial are $a b$ and $a^{2} b$, where $a=\frac{-1+\sqrt{-3}}{2}$. The minimal polynomial for a is $x^{2}+x+1=0$, meaning that $[\mathbf{Q}(a): \mathbf{Q}]=2,[\mathbf{Q}(\sqrt[3]{2}): \mathbf{Q}]=3$, and $[\mathbf{Q}(a \sqrt[3]{2}): \mathbf{Q}]=3$.

