Exam 1
Answers

1. (20 points) Let $f(x)=x^{2}-x-1$. Let $g(x)=\sqrt{x+1}$.
(a) Show that if p is a fixed point of g, then p is a root of f.
(b) Show that if p is a positive root of f, then p is a fixed point of g.
(c) Let $p_{0}=1.0$, and define $p_{n}=g\left(p_{n-1}\right)$. Compute p_{1} and p_{2}.
(d) Using the values of p_{0}, p_{1}, and p_{2} that you just computed, compute \hat{p}_{0} using the Aitken's Δ^{2}-method.
(e) Perform two iterations of Newton's method with $p_{0}=1$.
(f) Let $p_{0}=1.0, p_{1}=1.1$, and $p_{2}=1.2$. Using Müller's Method to compute p_{3}.
(g) Explain why Müller's method gives a better answer than either of the other methods.
Answer: (a) If $g(p)=p$, then $p=\sqrt{p+1}$, so $p^{2}=p+1$, and then $p^{2}-p-1=0$.
(b) If $f(p)=0$, then $p^{2}=p-1$, and we can take square roots of both sides provided that $p \geq 0$, and conclude that $p=g(p)$.
(c) I compute that $p_{1}=1.414214$ and $p_{2}=1.553774$.
(d) I compute $\hat{p}_{0}=1.624689$.
(e) Now, I compute that $p_{1}=2$ and $p_{2}=1.666667$.
(f) I compute that $a=1.0, b=1.4, c=-0.76$, and $p 3=1.618034$.
(g) We are solving a quadratic polynomial, and Müller's method involves computing the point of intersection of a quadratic polynomial and the x-axis. Usually, the quadratic polynomial involved is an approximation to $f(x)$, but in this case it is exactly $f(x)$, and so Müller's method gives the exact answer.
2. (20 points) Suppose that $f_{1}(x)$ has a zero of multiplicity m_{1} at a, and $f_{2}(x)$ has a zero of multiplicity m_{2} at a, with $m_{1}<m_{2}$.
(a) Let $g(x)=f_{1}(x) f_{2}(x)$. Show that $g(x)$ has a zero of multiplicity $m_{1}+m_{2}$ at a.
(b) Let $h(x)=f_{1}(x)+f_{2}(x)$. Show that $h(x)$ has a zero of multiplicity m_{1} at a.

Answer: Write $f_{1}(x)=(x-a)^{m_{1}} q_{1}(x)$ and $f_{2}(x)=(x-a)^{m_{2}} q_{2}(x)$, with $q_{1}(a) \neq 0$ and $q_{2}(a) \neq 0$.
(a) We have $g(x)=(x-a)^{m_{1}} q_{1}(x)(x-a)^{m_{2}} q_{2}(x)=(x-a)^{m_{1}+m_{2}} q_{1}(x) q_{2}(x)$. We know that $q_{1}(a) q_{2}(a) \neq 0$, so this shows that $g(x)$ has a zero of multiplicity $m_{1}+m_{2}$.
(b) We have $h(x)=(x-a)^{m_{1}} q_{1}(x)+(x-a)^{m_{2}} q_{2}(x)=(x-a)^{m_{1}}\left(q_{1}(x)+(x-\right.$ $\left.a)^{m_{2}-m_{1}} q_{2}(x)\right)$. Let $q_{3}(x)=q_{1}(x)+(x-a)^{m_{2}-m_{1}} q_{2}(x)$, so we have $h(x)=(x-a)^{m_{1}} q_{3}(x)$. We see that $q_{3}(a)=q_{1}(a) \neq 0$, and therefore $h(x)$ has a zero of multiplicity m_{1}.
3. (20 points) Perform the following two computations:

$$
\left(3+\frac{1}{13}\right)+\frac{1}{19} \quad 3+\left(\frac{1}{13}+\frac{1}{19}\right)
$$

(a) using 3-digit rounding arithmetic.
(b) using 3-digit chopping arithmetic.

Answer: (a) I compute that $3+\frac{1}{13} \approx 3.08$, and therefore $\left(3+\frac{1}{13}\right)+\frac{1}{19} \approx 3.08+0.0526 \approx 3.13$.
On the other hand, $\frac{1}{13}+\frac{1}{19} \approx 0.13$, and so $3+\left(\frac{1}{13}+\frac{1}{19}\right) \approx 3.13$
(b) I compute that $3+\frac{1}{13} \approx 3.07$, and therefore $\left(3+\frac{1}{13}\right)+\frac{1}{19} \approx 3.07+0.0526 \approx 3.12$.

On the other hand, $\frac{1}{13}+\frac{1}{19} \approx 0.129$, and therefore $3+\left(\frac{1}{13}+\frac{1}{19}\right) \approx 3.12$.
4. (20 points) Let $f(x)=e^{x} \sin x$.
(a) Compute $P_{2}(x)$, the second Taylor polynomial for $f(x)$, at $x=0$.
(b) Approximate $\int_{0}^{0.2} e^{x} \sin x d x$ by computing $\int_{0}^{0.2} P_{2}(x) d x$.
(c) Use the error term $R_{2}(x)$ to give a good upper bound for the error in the approximation in part (b).
Answer: (a) We start by computing $f^{\prime}(x)=e^{x}(\sin x+\cos x)$, and then $f^{\prime \prime}(x)=e^{x}(\sin x+$ $\cos x)+e^{x}(\cos x-\sin x)=2 e^{x} \cos x$, and then finally $f^{(3)}(x)=2 e^{x}(\cos x-\sin x)$. Therefore, $f(0)=0, f^{\prime}(0)=1$, and $f^{\prime \prime}(0)=2$.

We then compute $P_{2}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}=x+x^{2}$.
(b) We now approximate

$$
\left.\int_{0}^{0.2} e^{x} \sin x d x \approx \int_{0}^{0.2}\left(x+x^{2}\right) d x=\frac{x^{2}}{2}+\frac{x^{3}}{3}\right]_{0}^{0.2} \approx 0.022667
$$

(c) We know that $R_{2}(x)=\frac{f^{(3)}(\xi)}{6} x^{3}$, where ξ is between 0 and x. In this case, $0 \leq x \leq 0.2$, so $0 \leq \xi \leq 0.2$. We know that $f^{(3)}(\xi)=2 e^{\xi}(\cos \xi-\sin \xi)$. The largest value of $\cos \xi-\sin \xi$ on this interval occurs when $\xi=0$, and that value is 1 . The largest value of e^{ξ} occurs when $\xi=0.2$, and that value is 1.221403 . So the largest value of $R_{2}(x)$ is $\frac{1.221403}{6} \cdot 0.2^{3} \approx 0.001629$.

The error incurred in making the approximation is $\int_{0}^{0.2} R_{2}(x) d x \leq \int_{0}^{0.2} 0.001629 d x=$ 0.000326 . That is an upper bound for the absolute value of the error.

In this case, we can compute the integral exactly, and find that $\int_{0}^{0.2} e^{x} \sin x d x \approx$ 0.0228 .
5. (20 points) Let a be a fixed positive real number. Define the sequence x_{n} by

$$
x_{0}=1 \quad x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right), \quad n=0,1,2, \ldots
$$

Show that the sequence $\left\{x_{n}\right\}$ is the same sequence that arises by using Newton's method on the function $f(x)=x^{2}-a$ with $p_{0}=1$.
Answer: Newton's method says that $p_{n+1}=p_{n}-f\left(p_{n}\right) / f^{\prime}\left(p_{n}\right)$. In this case, that gives

$$
p_{n+1}=p_{n}-\frac{p_{n}^{2}-a}{2 p_{n}}=\frac{2 p_{n}^{2}-\left(p_{n}^{2}-a\right)}{2 p_{n}}=\frac{p_{n}^{2}+a}{2 p_{n}}=\frac{1}{2}\left(\frac{p_{n}^{2}+a}{p_{n}}\right)=\frac{1}{2}\left(p_{n}+\frac{a}{p_{n}}\right) .
$$

