Mathematics 414

Exam 2
Answers

1. (10 points) Evaluate

$$
\lim _{h \rightarrow 0}\left(\frac{3+h}{3-h}\right)^{1 / h}
$$

Answer: Let $C=\left(\frac{3+h}{3-h}\right)^{1 / h}$. Rather than evaluate $\lim _{h \rightarrow 0} C$, we evaluate $\lim _{h \rightarrow 0} \log C$. We have

$$
\begin{aligned}
\lim _{h \rightarrow 0} \log C & =\lim _{h \rightarrow 0} \frac{\log (3+h)-\log (3-h)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{3+h}+\frac{1}{3-h}}{1} \\
& =\lim _{h \rightarrow 0}\left(\frac{1}{3+h}+\frac{1}{3-h}\right)=\lim _{h \rightarrow 0} \frac{(3-h)+(3+h)}{(3-h)(3+h)}=\frac{2}{3}
\end{aligned}
$$

Because $\lim _{h \rightarrow 0} \log C=\frac{2}{3}$, we conclude that $\lim _{h \rightarrow 0} C=e^{2 / 3}$.
2. (50 points) Estimate

$$
\int_{-1}^{1} e^{-\sin x} d x
$$

(a) Using Gaussian quadrature with $n=3$.
(b) Using the composite trapezoidal rule with $n=5$.
(c) Give an upper bound for the error in your estimate in part (b).
(d) Estimate the integral using the composite Simpson's rule, first with $n=2$ and then with $n=4$.
(e) Use the methods of Chapter 4, Section 6, to estimate the error that occurred in part (d) when you used $n=4$.
Answer: Write $f(x)=e^{-\sin x}$ for simplicity.
(a) Gaussian quadrature with $n=3$ tells us to estimate the integral by $\frac{5}{9} f(0.7745966692)+\frac{8}{9} f(0)+$ $\frac{5}{9} f(-0.7745966692)$, which in this case gives approximately 2.2830391143 .
(b) We have $h=\frac{b-a}{n}=0.4$, so we need to compute $0.2(f(-1.0)+2 f(-0.6)+2 f(-0.2)+2 f(0.2)+$ $2 f(0.6)+f(1.0)) \approx 2.2969632458$.
(c) We first compute $f^{\prime}(x)=-\cos x e^{-\sin x}$ and then $f^{\prime \prime}(x)=\cos ^{2} x e^{-\sin x}+\sin x e^{-\sin x}$. It's obviously very hard to give an exact upper bound, but we can surely take 1 as an upper bound for $\cos x$ and $\sin x$, and $e^{-\sin x} \leq e$, because $-\sin x \leq 1$. So it's safe to assert that $f^{\prime \prime}(x) \leq 2 e$ for $x \in[-1,1]$. Now we apply the error estimate:

$$
\frac{b-a}{12} h^{2} f^{\prime \prime}(\mu) \leq \frac{1}{6}(0.4)^{2}(2 e) \approx 0.145
$$

(d) Simpson's rule with $n=2$ gives $h=\frac{b-a}{n}=1$, so we evaluate $\frac{1}{3}(f(-1.0)+4 f(0)+f(1.0)) \approx$ 2.2502842585.

Simpson's rule with $n=4$ gives $h=0.5$, and then we evaluate $\frac{1}{6}(f(-1.0)+4 f(-0.5)+2 f(0.0)+$ $4 f(0.5)+f(1.0)) \approx 2.2813323009$.
(e) The difference between these 2 values is approximately 0.0310480425 , and we can be conservative and use this value as 10ϵ, meaning that the error in the second estimate of the integral is approximately 0.003 .
3. (10 points) Suppose that you are given the values of $f\left(x_{0}\right), f\left(x_{0}+h\right)$, and $f\left(x_{0}+3 h\right)$. Use all three values to estimate $f^{\prime}\left(x_{0}\right)$, and give an error bound for your estimate.
Answer: We write

$$
\begin{aligned}
f\left(x_{0}+h\right) & =f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right)+\frac{h^{2}}{2} f^{\prime \prime}\left(x_{0}\right)+\frac{h^{3}}{6} f^{(3)}\left(\xi_{1}\right) \\
f\left(x_{0}+3 h\right) & =f\left(x_{0}\right)+3 h f^{\prime}\left(x_{0}\right)+\frac{9 h^{2}}{2} f^{\prime \prime}\left(x_{0}\right)+\frac{27 h^{3}}{6} f^{(3)}\left(\xi_{2}\right)
\end{aligned}
$$

Multiply the first equation by 9 and subtract the second one, and we have

$$
9 f\left(x_{0}+h\right)-f\left(x_{0}+3 h\right)=8 f\left(x_{0}\right)+6 h f^{\prime}\left(x_{0}\right)+\frac{h^{3}}{6}\left(9 f^{(3)}\left(\xi_{1}\right)-27 f^{(3)}\left(\xi_{2}\right)\right)
$$

So

$$
f^{\prime}\left(x_{0}\right)=\frac{1}{6 h}\left(-8 f\left(x_{0}\right)+9 f\left(x_{0}+h\right)-f\left(x_{0}+3 h\right)\right)-\frac{h^{3}}{2}\left(\frac{9 f^{(3)}\left(\xi_{1}\right)-27 f^{(3)}\left(\xi_{2}\right)}{18}\right) .
$$

Somewhat more work than we have done can show that this becomes

$$
f^{\prime}\left(x_{0}\right)=\frac{1}{6 h}\left(-8 f\left(x_{0}\right)+9 f\left(x_{0}+h\right)-f\left(x_{0}+3 h\right)\right)-\frac{h^{3}}{2} f^{(3)}(\xi)
$$

4. (30 points) (a) Determine constants a, b, c, and d that will produce a quadrature formula

$$
\int_{-1}^{1} f(x) d x=a f(-1)+b f(1)+c f^{\prime}(-1)+d f^{\prime}(1)
$$

which has degree of precision 3. In other words, your formula should give the exact answer for $\int_{-1}^{1} x^{n} d x$ for $n=0, \ldots, 3$.
(b) Use your formula to estimate

$$
\int_{-1}^{1} e^{-\sin x} d x
$$

Answer: We have

$$
\begin{aligned}
\int_{-1}^{1} 1 d x=2 & =a+b \\
\int_{-1}^{1} x d x=0 & =-a+b+c+d \\
\int_{-1}^{1} x^{2} d x=\frac{2}{3} & =a+b-2 c+2 d \\
\int_{-1}^{1} x^{3} d x=0 & =-a+b+3 c+3 d
\end{aligned}
$$

Subtract the third equation from the first, and we have $2 c-2 d=\frac{4}{3}$, or $6 c-6 d=4$. Subtract the second equation from the fourth, and we have $0=3 c+3 d$, or $6 c+6 d=0$. Add, yielding $12 c=4$, or $c=\frac{1}{3}$, and then $d=-\frac{1}{3}$.

Substitute these into the second equation, and we have $-a+b=0$, or $a=b$, and then we have $a=b=1$.
Our formula is therefore

$$
\int_{-1}^{1} f(x) d x \approx f(-1)+f(1)+\frac{1}{3} f^{\prime}(-1)-\frac{1}{3} f^{\prime}(1)
$$

(b) We can now try applying this formula to $f(x)=e^{-\sin x}$ and $f^{\prime}(x)=-\cos x e^{-\sin x}$, and we get

$$
\int_{-1}^{1} e^{-\sin x} d x \approx e^{-\sin (-1)}+e^{-\sin 1}+\frac{1}{3}\left(-\cos (-1) e^{-\sin (-1)}\right)-\frac{1}{3}\left(-\cos (1) e^{-\sin 1}\right) \approx 2.4106962962
$$

This is not all that far from the numbers produced in the first problem.

