Mathematics 414
Final Exam
Answers

1. (20 points) Let $f(x)=x-e^{-x}$.
(a) Which theorem allows you to conclude that the equation $f(x)=0$ has a solution in the interval $[0,1]$?
(b) Perform three steps of bisection on this interval, to estimate a solution to that equation.
(c) Perform three steps of Newton's method, with a starting value of $x=0.5$, to estimate a solution to that equation.
(d) Write the equation as $x=e^{-x}$, and perform three iterations of the function e^{-x} starting at $x=0.5$, to estimate a solution to the equation.
(e) Apply Aitken's Δ^{2}-method to your results in part (d) to get an improved estimate of a solution. Answer: (a) We know that $f(0)=-1$, and $f(1)=0.6321$, so the Intermediate Value Theorem says that between 0 and $1, f(x)$ must take on the value 0 .
(b) We compute that $f(0.5)=-0.1065$, and then $f(0.75)=0.2776$, and then $f(0.625)=0.0897$, so a solution lies between 0.5 and 0.625 .
(c) We compute $f^{\prime}(x)=1+e^{-x}$. Recalling that Newton's method is $x_{n+1}=x_{n}-f\left(x_{n}\right) / f^{\prime}\left(x_{n}\right)$, and setting $x_{0}=0.5$, we have $x_{1}=0.5663, x_{2}=0.5671$, and $x_{3}=0.5671$ as well.
(d) Let $g(x)=e^{-x}$. We have $x_{1}=g(0.5)=0.6065$, and $x_{2}=g\left(x_{1}\right)=0.5452$, and $x_{3}=g\left(x_{2}\right)=0.5797$.
(e) We have $\hat{x}_{1}=x_{1}-\left(x_{2}-x_{1}\right)^{2} /\left(x_{3}-2 x_{2}+x_{1}\right)=0.5673$.
2. (10 points) Suppose that $f(-1)=3, f(0)=4$, and $f(2)=5$. Find the Lagrange interpolating polynomial which interpolates these values, and use it to estimate $f^{\prime}(0)$. Give a bound on the error of this estimate in terms of $f^{(k)}(x)$.
Answer: We have

$$
\begin{aligned}
L_{2}(x) & =\frac{(x-0)(x-2)}{(-1-0)(-1-2)} 3+\frac{(x+1)(x-2)}{(0+1)(0-2)} 4+\frac{(x+1)(x-0)}{(2+1)(2-0)} 5 \\
& =x^{2}-2 x-2(x+1)(x-2)+\frac{5}{6}\left(x^{2}+x\right) \\
& =x^{2}-2 x-2\left(x^{2}-x-2\right)+\frac{5}{6}\left(x^{2}+x\right)
\end{aligned}
$$

Now, it is easy to compute $L_{2}^{\prime}(0)=-2+2+\frac{5}{6}=\frac{5}{6}$.
For the error, remember that $f(x)=L_{2}(x)+\frac{f^{(3)}(\xi)}{6}(x+1) x(x-2)$ for $x, \xi \in[-1,2]$. Apply the product rule, and we have $f^{\prime}(0)=L_{2}^{\prime}(0)+\frac{f^{(3)}(\xi)}{6}(1)(-2)=L_{2}^{\prime}(0)-\frac{f^{(3)}(\xi)}{3}$ for some $\xi \in[-1,2]$.
3. (20 points) Consider the differential equation

$$
\frac{d y}{d t}=\cos y, \quad y(0)=1
$$

Using a value of $h=1$, estimate the value of $y(1)$ in the following ways:
(a) Euler's Method.
(b) Modified Euler's Method.
(c) Third-order Taylor Method.
(d) Midpoint Method
(e) Fourth-order Runge-Kutta Method.

Answer: (a) Euler's method has

$$
\begin{aligned}
& w_{0}=1 \\
& w_{1}=w_{0}+h f\left(t_{0}, w_{0}\right)=1+\cos 1 \approx 1.5403
\end{aligned}
$$

(b) The Modified Euler's method has

$$
\begin{aligned}
& w_{0}=1 \\
& w_{1}=w_{0}+\frac{h}{2}\left(f\left(t_{0}, w_{0}\right)+f\left(t_{1}, w_{0}+h f\left(t_{0}, w_{0}\right)\right)\right)=1+\frac{1}{2}(\cos 1+\cos (1+\cos 1)) \approx 1.2854
\end{aligned}
$$

(c) We must first compute $T^{(3)}\left(t_{i}, w_{i}\right)=f\left(t_{i}, w_{i}\right)+\frac{h}{2} f^{\prime}\left(t_{i}, w_{i}\right)+\frac{h^{2}}{6} f^{\prime \prime}\left(t_{i}, w_{i}\right)$. We have $f\left(t_{i}, w_{i}\right)=$ $\cos w_{i}$. Then $f^{\prime}\left(t_{i}, w_{i}\right)=-\sin w_{i} \frac{d w_{i}}{d t}=-\sin w_{i} \cos w_{i}=-\frac{1}{2} \sin 2 w_{i}$, and $f^{\prime \prime}\left(t_{i}, w_{i}\right)=-\cos 2 w_{i} \frac{d w_{i}}{d t}=$ $-\cos 2 w_{i} \cos w_{i}$.

We therefore have

$$
\begin{aligned}
& w_{0}=1 \\
& w_{1}=w_{0}+h T^{(3)}\left(t_{0}, w_{0} 2\right)=1+\cos 1-\frac{1}{4} \sin 2-\frac{1}{6} \cos 2 \cos 1 \approx 1.3505
\end{aligned}
$$

(d) The Midpoint Method gives

$$
\begin{aligned}
& w_{0}=1 \\
& w_{1}=w_{0}+h f\left(t_{i}+\frac{h}{2}, w_{i}+\frac{h}{2} f\left(t_{i}, w_{i}\right)\right)=1+\cos \left(1+\frac{\cos 1}{2}\right)=1.2961
\end{aligned}
$$

(e) Fourth-order Runge-Kutta gives

$$
\begin{aligned}
w_{0} & =1 \\
k_{1} & =h f\left(t_{0}, w_{0}\right)=\cos 1 \approx 0.5403 \\
k_{2} & =h f\left(t_{0}+\frac{h}{2}, w_{0}+\frac{1}{2} k_{1}\right)=\cos \left(1+\frac{0.5403}{2}\right) \approx 0.2961 \\
k_{3} & =h f\left(t_{0}+\frac{h}{2}, w_{0}+\frac{1}{2} k_{2}\right)=\cos \left(1+\frac{0.2961}{2}\right) \approx 0.4102 \\
k_{4} & =h f\left(t_{0}, w_{0}+k_{3}\right)=\cos (1+0.4102) \approx 0.1599 \\
w_{1} & =w_{0}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \approx 1.3522
\end{aligned}
$$

4. (10 points) Derive the Adams-Moulton Two-Step Implicit Method for solving first-order differential equations:

$$
\begin{aligned}
w_{0} & =\alpha \\
w_{1} & =\alpha_{1} \\
w_{i+1} & =w_{i}+\frac{h}{12}\left(5 f\left(t_{i+1}, w_{i+1}\right)+8 f\left(t_{i}, w_{i}\right)-f\left(t_{i-1}, w_{i-1}\right)\right)
\end{aligned}
$$

Answer: We derive this formula by applying the Newton backward difference formula to interpolate a quadratic polynomial $P_{2}(t)$ through the three points $\left(t_{k}, f\left(t_{k}, w_{k}\right)\right)$ for $k=t_{i-1}, t_{i}, t_{i+1}$, and then applying the approximation $w_{i+1}=w_{i}+\int_{t_{i}}^{t_{i+1}} P_{2}(t) d t$. We have

$$
P_{2}(t)=\sum_{k=0}^{2}(-1)^{k}\binom{-s}{k} \nabla^{k} f\left(t_{i+1}, w_{i+1}\right)
$$

We make the change of variables $t=t_{i+1}+s h$, with $d t=h d s$, and we have

$$
\begin{aligned}
\int_{t_{i}}^{t_{i+1}} P_{2}(t) d t & =\int_{t_{i}}^{t_{i+1}} \sum_{k=0}^{2}(-1)^{k}\binom{-s}{k} \nabla^{k} f\left(t_{i+1}, w_{i+1}\right) d t \\
& =\sum_{k=0}^{2}(-1)^{k} h \nabla^{k} f\left(t_{i+1}, w_{i+1}\right) \int_{-1}^{0}\binom{-s}{k} d s
\end{aligned}
$$

The evaluation of the integral yields

$$
\begin{aligned}
& \int_{-1}^{0}\binom{-s}{0} d s=\int_{-1}^{0} 1 d s=1 \\
& \int_{-1}^{0}\binom{-s}{1} d s=\int_{-1}^{0}-s d s=\frac{1}{2} \\
& \int_{-1}^{0}\binom{-s}{2} d s=\int_{-1}^{0} \frac{s^{2}+s}{2} d s=-\frac{1}{12}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
w_{i+1} & =w_{i}+h\left(f\left(t_{i+1}, w_{i+1}\right)-\frac{1}{2} \nabla f\left(t_{i+1}, w_{i+1}\right)-\frac{1}{12} \nabla^{2} f\left(t_{i+1}, w_{i+1}\right)\right) \\
& =w_{i}+h\left(f\left(t_{i+1}, w_{i+1}\right)-\frac{1}{2}\left(f\left(t_{i+1}, w_{i+1}\right)-f\left(t_{i}, w_{i}\right)\right)-\frac{1}{12}\left(f\left(t_{i+1}, w_{i+1}\right)-2 f\left(t_{i}, w_{i}\right)+f\left(t_{i-1}, w_{i-1}\right)\right)\right) \\
& =w_{i}+\frac{h}{12}\left(5 f\left(t_{i+1}, w_{i+1}\right)+8 f\left(t_{i}, w_{i}\right)-f\left(t_{i-1}, w_{i-1}\right)\right)
\end{aligned}
$$

5. (5 points) Suppose that

$$
p_{n}=\sum_{k=0}^{n} a_{k}
$$

Show that

$$
\hat{p}_{n}=p_{n}+\frac{a_{n+1}^{2}}{a_{n+1}-a_{n+2}}
$$

where, as usual, \hat{p}_{n} is the new sequence resulting from applying the Aitken's Δ^{2}-method.
Answer: Notice that $p_{n+1}-p_{n}=a_{n+1}$ and $p_{n+2}-p_{n+1}=a_{n+2}$. Therefore,

$$
\begin{aligned}
\hat{p}_{n} & =p_{n}-\frac{\left(\Delta p_{n}\right)^{2}}{\Delta^{2} p_{n}}=p_{n}-\frac{\left(p_{n+1}-p_{n}\right)^{2}}{\left(p_{n+2}-p_{n+1}\right)-\left(p_{n+1}-p_{n}\right)} \\
& =p_{n}-\frac{a_{n+1}^{2}}{a_{n+2}-a_{n+1}}=p_{n}+\frac{a_{n+1}^{2}}{a_{n+1}-a_{n+2}}
\end{aligned}
$$

6. (10 points) Suppose that $f(-1)=3, f(0)=4$, and $f(2)=5$. Find the free cubic spline interpolation $S(x)$ through these points. What is the value of $S^{\prime}(0)$?
Answer: Let

$$
S(x)= \begin{cases}d_{0}(x+1)^{3}+c_{0}(x+1)^{2}+b_{0}(x+1)+a_{0} & x \leq 0 \\ d_{1}(x-0)^{3}+c_{1}(x-0)^{2}+b_{1}(x-0)+a_{1} & x \geq 0\end{cases}
$$

We have $h_{0}=1$ and $h_{1}=2$. We have $c_{0}=0, c_{2}=0, a_{0}=3, a_{1}=4$, and $a_{2}=5$. The matrix equation

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 6 & 2 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
-\frac{3}{2} \\
0
\end{array}\right]
$$

gives $c_{1}=-\frac{1}{4}$. Then we can compute that $b_{0}=\frac{13}{12}, b_{1}=\frac{5}{6}, d_{0}=-\frac{1}{12}$, and $d_{1}=\frac{1}{24}$. Therefore, we have

$$
S(x)= \begin{cases}\frac{-(x+1)^{3}}{12}+\frac{13(x+1)}{12}+3 & x \leq 0 \\ \frac{x^{3}}{24}-\frac{x^{2}}{4}+\frac{5 x}{6}+4 & x \geq 0\end{cases}
$$

and we can then compute that $S^{\prime}(0)=\frac{5}{6}$.
7. (20 points) (a) Evaluate

$$
\lim _{h \rightarrow 0}\left(\frac{1-h}{1+h}\right)^{1 / h}
$$

(b) Let

$$
N(h)=\left(\frac{1-h}{1+h}\right)^{1 / h}
$$

Compute $N(0.5)$ and $N(0.1)$.
(c) Let L be the limit computed in part (a). Assume that $L=N(h)+K_{1} h+K_{2} h^{2}+K_{3} h^{3}+K_{4} h^{4}+\cdots$. Use extrapolation and the values of $N(0.5)$ and $N(0.1)$ to compute an $O\left(h^{2}\right)$ approximation to L.
(d) We can see that $N(h)=N(-h)$. (You do not need to verify this.) Use that equation to show that $K_{1}=K_{3}=K_{5}=\cdots=0$, so

$$
L=N(h)+K_{2} h^{2}+K_{4} h^{4}+K_{6} h^{6}+\cdots .
$$

(e) Use the result of part (d) and an extrapolation to compute an $O\left(h^{4}\right)$ approximation to L. Answer: (a) Let $C=\left(\frac{1-h}{1+h}\right)^{1 / h}$. Rather than evaluate $\lim _{h \rightarrow 0} C$, we evaluate $\lim _{h \rightarrow 0} \log C$. We have

$$
\begin{aligned}
\lim _{h \rightarrow 0} \log C & =\lim _{h \rightarrow 0} \frac{\log (1-h)-\log (1+h)}{h}=\lim _{h \rightarrow 0} \frac{-\frac{1}{1-h}-\frac{1}{1+h}}{1} \\
& =\lim _{h \rightarrow 0}-\left(\frac{1}{1-h}+\frac{1}{1+h}\right)=\lim _{h \rightarrow 0}-\frac{(1+h)+(1-h)}{(1-h)(1+h)}=-2
\end{aligned}
$$

Because $\lim _{h \rightarrow 0} \log C=-2$, we conclude that $\lim _{h \rightarrow 0} C=e^{-2}$.
(b) We have $N(0.5)=0.1111$ and $N(0.1)=0.1344$.
(c) Suppose that $e^{-2}=N(h)+K_{1} h+K_{2} h^{2}+\cdots$. That gives

$$
\begin{aligned}
& e^{-2}=N(0.5)+0.5 K_{1}+\cdots \\
& e^{-2}=N(0.1)+0.1 K_{1}+\cdots
\end{aligned}
$$

Multiplying the second equation by 5 and subtracting the first one gives $4 e^{-2} \approx 5 N(0.1)-N(0.5)$, or $e^{-2} \approx \frac{5 N(0.1)-N(0.5)}{4} \approx 0.1403$.
(d) We have

$$
\begin{aligned}
& e^{-2}=N(\quad h)+K_{1} h+K_{2} h^{2}+K_{3} h^{3}+K_{4} h^{4}+\cdots \\
& e^{-2}=N(-h)-K_{1} h+K_{2} h^{2}-K_{3} h^{3}+K_{4} h^{4}+\cdots
\end{aligned}
$$

Adding and dividing by 2 yields

$$
e^{-2}=N(h)+K_{2} h^{2}+K_{4} h^{4}+\cdots .
$$

(e) Now we have

$$
\begin{aligned}
& e^{-2}=N(0.5)+0.25 K_{2}+\cdots \\
& e^{-2}=N(0.1)+0.01 K_{2}+\cdots
\end{aligned}
$$

Multiplying the second equation by 25 and subtracting the first one yields $24 e^{-2} \approx 25 N(0.1)-N(0.5)$, or $e^{-2} \approx \frac{25 N(0.1)-N(0.5)}{24} \approx 0.1354$. The correct answer to 4 decimal places is 0.1353 .
8. (20 points) Estimate the integral $\int_{0}^{1} e^{-x} d x$ by:
(a) integrating a degree-4 Maclaurin polynomial for e^{-x}.
(b) using the midpoint method with $h=0.5$.
(c) using the trapezoidal rule with $h=0.5$.
(d) using Simpson's rule with $h=0.5$.
(e) rewriting the integral as the differential equation

$$
\frac{d y}{d t}=e^{-t}, y(0)=1
$$

and estimating $y(1)$ by taking $h=1.0$ and using the fourth-order Runge-Kutta method.
Answer: (a) We have

$$
e^{-x}=1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\cdots
$$

so we can approximate

$$
\int_{0}^{1} e^{-x} d x \approx \int_{0}^{1}\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}\right) d x=1-\frac{1}{2}+\frac{1}{6}-\frac{1}{24}+\frac{1}{120} \approx 0.6333
$$

(b) The midpoint method yields

$$
\int_{0}^{1} e^{-x} d x \approx \frac{1}{2}\left(e^{-0.25}+e^{-0.75}\right) \approx 0.6256 .
$$

(c) The trapezoidal rule yields

$$
\int_{0}^{1} e^{-x} d x \approx \frac{1}{4}\left(e^{0}+2 e^{-0.5}+e^{-1}\right) \approx 0.6452 .
$$

(d) Simpson's rule yields

$$
\int_{0}^{1} e^{-x} d x \approx \frac{1}{6}\left(e^{0}+4 e^{-0.5}+e^{-1}\right) \approx 0.6323 .
$$

(e) We have

$$
\begin{aligned}
w_{0} & =0 \\
k_{1} & =e^{-0}=1 \\
k_{2} & =e^{-0.5} \approx 0.6065 \\
k_{3} & =e^{-0.5} \approx 0.6065 \\
k_{4} & =e^{-1.0} \approx 0.3679 \\
w_{1} & =0+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \approx 0.6323
\end{aligned}
$$

which not coincidentally is the same answer as Simpson's method.

