MT414: Numerical Analysis

Homework 1
Due September 22, 2006

1. Let $f(x)=x e^{x^{2}}$.
(a) Find the fourth Taylor polynomial $P_{4}(x)$ for $f(x)$ about $x_{0}=0$.
(b) Find an upper bound for $\left|f(x)-P_{4}(x)\right|$ for $x \in[0,0.4]$.
(c) Approximate $\int_{0}^{0.4} f(x) d x$ using $\int_{0}^{0.4} P_{4}(x) d x$.
(d) Find an upper bound for the error in the computation in part (c) by using your answer to part (b).
(e) Approximate $f^{\prime}(0.2)$ by computing $P_{4}^{\prime}(0.2)$. Use the correct answer for $f^{\prime}(0.2)$ (to 5 decimal places) to compute the relative error in your computation.
2. Use the Intermediate Value Theorem and Rolle's Theorem to show that the equation $x^{3}+2 x+k=0$ has exactly one real solution, regardless of the value of the constant k.
3. Perform the following calculations
(i) exactly,
(ii) using three-digit chopping arithmetic, and
(iii) using three-digit rounding arithmetic.
(iv) Compute the relative errors in parts (ii) and (iii).
(a) $\frac{4}{5}+\frac{1}{3}$
(b) $\frac{4}{5} \cdot \frac{1}{3}$
(c) $\left(\frac{1}{3}-\frac{3}{11}\right)+\frac{3}{20}$
(d) $\left(\frac{1}{3}+\frac{3}{11}\right)-\frac{3}{20}$
4. Suppose that two points $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ are on a straight line with $y_{1} \neq y_{0}$. Two formulas are available to compute the x-intercept of the line:

$$
x=\frac{x_{0} y_{1}-x_{1} y_{0}}{y_{1}-y_{0}} \quad \text { and } \quad x=x_{0}-\frac{\left(x_{1}-x_{0}\right) y_{0}}{y_{1}-y_{0}}
$$

(a) Show that both formulas are algebraically correct.
(b) Suppose that $\left(x_{0}, y_{0}\right)=(1.31,3.24)$ and $\left(x_{1}, y_{1}\right)=(1.93,4.76)$. Use three-digit rounding arithmetic to compute the x-intercept using both of the formulas. Which method is better and why?
5. The Taylor polynomial of degree n for $f(x)=e^{x}$ is $\sum_{i=0}^{n} \frac{x^{i}}{i!}$. Use the Taylor polynomial of degree 9 and three-digit chopping arithmetic to find an approximation to e^{-5} using each of the following methods:
(a) $e^{-5} \approx \sum_{i=0}^{9} \frac{(-5)^{i}}{i!}=\sum_{i=0}^{9} \frac{(-1)^{i} 5^{i}}{i!}$.
(b) $e^{-5}=\frac{1}{e^{5}} \approx \frac{1}{\sum_{i=0}^{9} \frac{5^{i}}{i!}}$.
(c) Use your calculator to approximate e^{-5} to 8 places. Which formula, (a) or (b), gave the most accuracy, and why?
6. Suppose that $f l(y)$ is a k-digit rounding approximation to y. Show that

$$
\left|\frac{y-f l(y)}{y}\right| \leq 0.5 \times 10^{-k+1}
$$

