
MT414: Numerical Analysis
Homework 1

Answers

1. Let f(x) = xex2
.

(a) Find the fourth Taylor polynomial P4(x) for f(x) about x0 = 0.
(b) Find an upper bound for |f(x)− P4(x)| for x ∈ [0, 0.4].

(c) Approximate
∫ 0.4

0

f(x) dx using
∫ 0.4

0

P4(x) dx.

(d) Find an upper bound for the error in the computation in part (c) by using your answer to part (b).
(e) Approximate f ′(0.2) by computing P ′4(0.2). Use the correct answer for f ′(0.2) (to 5 decimal places)

to compute the relative error in your computation.

Answer: (a) We have

f(x) = xex2

f ′(x) = ex2
+ 2x2ex2

= (1 + 2x2)ex2

f ′′(x) = 4xex2
+ (1 + 2x2)(2x)ex2

= (6x+ 4x3)ex2

f (3)(x) = (6 + 12x2)ex2
+ (6x+ 4x3)(2x)ex2

= (6 + 24x2 + 8x4)ex2

f (4)(x) = (48x+ 32x3)ex2
+ (6 + 24x2 + 8x4)(2x)ex2

= (60x+ 80x3 + 16x5)ex2

f (5)(x) = (60 + 240x2 + 80x4)ex2
+ (60x+ 80x3 + 16x5)(2x)ex2

= (60 + 360x2 + 240x4 + 32x6)ex2

We have f(0) = 0, f ′(0) = 1, f ′′(0) = 0, f (3)(0) = 6 and f (4)(0) = 0. This means that P4(x) = x+ x3

(b) We know that f(x) = P4(x) + E4(x), where E4(x) = f (5)(ξ)x5/120, where 0 ≤ ξ ≤ x. Because
x ∈ [0, 0.4], the largest possible value of E4(x) is given by f (5)(0.4)(0.4)5/120. We can also say that
f (5)(0.4) ≤ 124e0.42 ≤ 146, using 12-digit arithmetic, so f (5)(ξ) ≤ 146. Therefore, |f(x)−P4(x)| = |E4(x)| ≤
146 · 0.45/120 ≤ 0.0125.

(c) We can approximate
∫ 0.4

0

f(x) dx by

∫ 0.4

0

P4(x) dx =
∫ 0.4

0

(x+ x3) dx =
x2

2
+
x4

4

]0.4

0

=
0.42

2
+

0.44

4
= 0.0864.

(d) The absolute error in this computation is∣∣∣∣∫ 0.4

0

f(x) dx−
∫ 0.4

0

P4(x) dx
∣∣∣∣ ≤ ∫ 0.4

0

|f(x)− P4(x)| dx

=
∫ 0.4

0

|E4(x)| dx ≤
∫ 0.4

0

0.0125 dx = 0.0125 · 0.4 = 0.005

However, the relative error is possibly as large as 0.005
0.0864−0.005 ≤ 0.07, so our answer is not quite correct to 2

decimal places.
(e) We have P ′4(x) = 1 + 3x2, so P ′4(0.2) = 1.12. We can compute that f ′(0.2) = 1.1241, so the relative

error is 0.0036.

2. Use the Intermediate Value Theorem and Rolle’s Theorem to show that the equation x3 + 2x+ k = 0 has
exactly one real solution, regardless of the value of the constant k.

Answer: Let f(x) = x3+2x+k. Suppose that there are two unequal numbers a and b so that f(a) = f(b) = 0.
Rolle’s Theorem then says that there is a value c between a and b so that f ′(c) = 0. However, f ′(c) = 3c2 +2,
and the equation 3c2 + 2 = 0 has no solutions for any value of c.



Therefore, there is at most one real solution. How can we be sure that there is at least one solution?
Here’s an argument that is probably much too detailed: If |k| ≤ 1, then f(2) ≥ 0 and f(−2) ≤ 0, so
the Intermediate Value Theorem can be applied to deduce that there must be a solution. If |k| > 1, then
f(|k|) > 0, and f(−|k|) < 0, so we again can apply the Intermediate Value Theorem.

3. Perform the following calculations
(i) exactly,

(ii) using three-digit chopping arithmetic, and
(iii) using three-digit rounding arithmetic.
(iv) Compute the relative errors in parts (ii) and (iii).

(a)
4
5

+
1
3

(b)
4
5
· 1

3
(c)

(
1
3
− 3

11

)
+

3
20

(d)
(

1
3

+
3
11

)
− 3

20

Answer: We have

a b c d

Exact
17
15

4
15

139
660

301
660

3-digit chopping 1.13 0.266 0.211 0.455

Relative error 0.003 0.0025 0.002 0.00233

3-digit rounding 1.13 0.266 0.21 0.456

Relative error 0.003 0.0025 0.0029 0.000133

4. Suppose that two points (x0, y0) and (x1, y1) are on a straight line with y1 6= y0. Two formulas are
available to compute the x-intercept of the line:

x =
x0y1 − x1y0
y1 − y0

and x = x0 −
(x1 − x0)y0
y1 − y0

.

(a) Show that both formulas are algebraically correct.
(b) Suppose that (x0, y0) = (1.31, 3.24) and (x1, y1) = (1.93, 4.76). Use three-digit rounding arithmetic

to compute the x-intercept using both of the formulas. Which method is better and why?
Answer: (a) We should be a bit careful here to avoid dividing by 0. It is potentially unsafe to write that the

equation of the line is
y − y0
x− x0

=
y1 − y0
x1 − x0

, because potentially x0 = x1. However, we are told that y0 6= y1,

so we can instead write the equation of the line as
x− x0

y − y0
=
x1 − x0

y1 − y0
. We can cross-multiply and write this

instead as x− x0 = y − y0
(
x1 − x0

y1 − y0

)
.

The x-intercept is the point on the line at which y = 0, so we can substitute y = 0 into this equation

and get x− x0 = (−y0)
(
x1 − x0

y1 − y0

)
, or x = x0 −

(x1 − x0)y0
y1 − y0

, which is the given formula.

Now we can simplify:

x = x0 −
(x1 − x0)y0
y1 − y0

=
x0(y1 − y0)
y1 − y0

− (x1 − x0)y0
y1 − y0

=
x0y1 − x1y0
y1 − y0

.



(b) The first formula gives the answer −0.00658, while the second formula gives the answer −0.0100. In
this case, the second formula is better. The first one involved subtracting x0y1 − x1y0. Because x0y1 = 6.24
and x1y0 = 6.25, the result of the subtraction has only one significant digit.

We can check this by working to 10 significant digits. In that case, the first formula gives −0.0115789474
and the second gives −0.0115789470. Surely the answer is closer to −0.01 than to −0.00658.

5. The Taylor polynomial of degree n for f(x) = ex is
n∑

i=0

xi

i!
. Use the Taylor polynomial of degree 9 and

three-digit chopping arithmetic to find an approximation to e−5 using each of the following methods:

(a) e−5 ≈
9∑

i=0

(−5)i

i!
=

9∑
i=0

(−1)i5i

i!
.

(b) e−5 =
1
e5
≈ 1

9∑
i=0

5i

i!

.

(c) Use your calculator to approximate e−5 to 8 places. Which formula, (a) or (b), gave the most
accuracy, and why?

Answer: We have

i i! 5i 5i

i!
0 1 1 1.00
1 1 5 5.00
2 2 25 12.5
3 6 125 20.8
4 24 625 26.0
5 120 3120 26.0
6 720 15600 21.6
7 5040 78000 15.4
8 40300 390000 9.67
9 362000 1950000 5.38

The formula in part (a) gives 1.00− 5.00 + 12.5− 20.8 + 26.0− 26.0 + 21.6− 15.4 + 9.67− 5.38 = −1.81.
This is obviously incorrect, because e−5 > 0. The formula in part (b) gives 1/(1.00 + 5.00 + 12.5 + 20.8 +
26.0 + 26.0 + 21.6 + 15.4 + 9.67 + 5.38) = 1/141 = 0.00709. To 8 places, e−5 ≈ 0.0067379470.

The formula in part (b) becomes a bit better if we add the numbers in increasing order, to avoid losing
precision. We have 1/(1.00 + 5.00 + 5.38 + 9.67 + 12.5 + 15.4 + 20.8 + 21.6 + 26.0 + 26.0) = 1/143 = 0.00699.

The difficulty with the formula in part (a) is that it can involve subtracting nearly equal numbers,
resulting in a loss of precision.

6. Suppose that fl(y) is a k-digit rounding approximation to y. Show that∣∣∣∣y − fl(y)
y

∣∣∣∣ ≤ 0.5× 10−k+1.

Answer: Suppose that y = 0.d1d2d3 . . .× 10n. If dk+1 < 5, then fl(y) = 0.d1d2 . . . dk × 10n, and therefore∣∣∣∣y − fl(y)
y

∣∣∣∣ =
∣∣∣∣0.0 . . . 0dk+1 . . .

0.d1d2 . . .

∣∣∣∣ < 5× 10−k−1

0.1
= 5× 10−k = 0.5× 10−k+1.

If dk+1 ≥ 5, then fl(y) = (0.d1d2 . . . dk + 10−k)× 10n, and then∣∣∣∣y − fl(y)
y

∣∣∣∣ =
∣∣∣∣0.0 . . . 0dk+1 . . .− 10−k

0.d1d2 . . .

∣∣∣∣ ≤ 5× 10−k−1

0.1
= 0.5× 10−k+1.


