MT414: Numerical Analysis

Homework 2
Due September 29, 2006

1. Let $a=0.96$ and $b=0.99$.
(a) Using two-digit rounding arithmetic, compute $\frac{a+b}{2}$.
(b) Using two-digit rounding arithmetic, compute $a+\frac{b-a}{2}$.
(c) Which of these two values is a better approximation to the actual value of $\frac{a+b}{2}$?
2. Find the rates of convergence of the following functions as $n \rightarrow \infty$:
a. $\lim _{n \rightarrow \infty} \sin \frac{1}{n}=0$
b. $\lim _{n \rightarrow \infty} \sin \frac{1}{n^{2}}=0$
c. $\lim _{n \rightarrow \infty}\left(\sin \frac{1}{n}\right)^{2}=0$
d. $\quad \lim _{n \rightarrow \infty} \log (n+1)-\log (n)=0$
3. Find the rates of convergence of the following functions as $h \rightarrow 0$:
a. $\quad \lim _{h \rightarrow 0} \frac{\sin h}{h}=1$
b. $\lim _{h \rightarrow 0} \frac{1-\cos h}{h}=0$
c. $\quad \lim _{h \rightarrow 0} \frac{\sin h-h \cos h}{h}=0$
d. $\lim _{h \rightarrow 0} \frac{1-e^{h}}{h}=-1$
4. Suppose that $0<q<p$ and $\alpha_{n}=\alpha+O\left(n^{-p}\right)$. Show that $\alpha_{n}=\alpha+O\left(n^{-q}\right)$.
5. Suppose that $0<q<p$ and $F(h)=L+O\left(h^{p}\right)$. Show that $F(h)=L+O\left(h^{q}\right)$.
6. Use the bisection method to find a solution accurate to within 0.01 for the equation $x^{4}-2 x^{3}-4 x^{2}+4 x+4=0$ on the interval $[-1,4]$.
7. Let $f(x)=x^{4}+2 x^{2}-x-3$. Use algebraic manipulations to show that each of the following functions has a fixed point at p if and only if $f(p)=0$:
a. $\quad g_{1}(x)=\left(3+x-2 x^{2}\right)^{1 / 4}$
b. $\quad g_{2}(x)=\left(\frac{x+3-x^{4}}{2}\right)^{1 / 2}$
c. $g_{3}(x)=\left(\frac{x+3}{x^{2}+2}\right)^{1 / 2}$
d. $g_{4}(x)=\frac{3 x^{4}+2 x^{2}+3}{4 x^{3}+4 x-1}$
8. Use the functions $g_{k}(x)$ in the previous problem and perform four iterations (if possible, without dividing by 0 or taking the square root of a negative number), starting with $p_{0}=1$ and $g_{k}\left(p_{n}\right)=p_{n+1}$. Which of the four functions seems to give the best approximation to a solution of the equation $f(x)=0$?
