MT414: Numerical Analysis Homework 2 Due September 29, 2006

1. Let a = 0.96 and b = 0.99.

- (a) Using two-digit rounding arithmetic, compute $\frac{a+b}{2}$.
- (b) Using two-digit rounding arithmetic, compute $a + \frac{b-a}{2}$.

(c) Which of these two values is a better approximation to the actual value of $\frac{a+b}{2}$?

2. Find the rates of convergence of the following functions as $n \to \infty$:

a.
$$\lim_{n \to \infty} \sin \frac{1}{n} = 0$$

b.
$$\lim_{n \to \infty} \sin \frac{1}{n^2} = 0$$

c.
$$\lim_{n \to \infty} \left(\sin \frac{1}{n} \right)^2 = 0$$

d.
$$\lim_{n \to \infty} \log(n+1) - \log(n) = 0$$

3. Find the rates of convergence of the following functions as $h \to 0$:

a.
$$\lim_{h \to 0} \frac{\sin h}{h} = 1$$

b. $\lim_{h \to 0} \frac{1 - \cos h}{h} = 0$
c. $\lim_{h \to 0} \frac{\sin h - h \cos h}{h} = 0$
d. $\lim_{h \to 0} \frac{1 - e^h}{h} = -1$

4. Suppose that 0 < q < p and $\alpha_n = \alpha + O(n^{-p})$. Show that $\alpha_n = \alpha + O(n^{-q})$.

5. Suppose that 0 < q < p and $F(h) = L + O(h^p)$. Show that $F(h) = L + O(h^q)$.

6. Use the bisection method to find a solution accurate to within 0.01 for the equation $x^4 - 2x^3 - 4x^2 + 4x + 4 = 0$ on the interval [-1, 4].

7. Let $f(x) = x^4 + 2x^2 - x - 3$. Use algebraic manipulations to show that each of the following functions has a fixed point at p if and only if f(p) = 0:

a.
$$g_1(x) = (3+x-2x^2)^{1/4}$$

b. $g_2(x) = \left(\frac{x+3-x^4}{2}\right)^{1/2}$
c. $g_3(x) = \left(\frac{x+3}{x^2+2}\right)^{1/2}$
d. $g_4(x) = \frac{3x^4+2x^2+3}{4x^3+4x-1}$

8. Use the functions $g_k(x)$ in the previous problem and perform four iterations (if possible, without dividing by 0 or taking the square root of a negative number), starting with $p_0 = 1$ and $g_k(p_n) = p_{n+1}$. Which of the four functions seems to give the best approximation to a solution of the equation f(x) = 0?