MT414: Numerical Analysis

Homework 2
Answers

1. Let $a=0.96$ and $b=0.99$.
(a) Using two-digit rounding arithmetic, compute $\frac{a+b}{2}$.
(b) Using two-digit rounding arithmetic, compute $a+\frac{b-a}{2}$.
(c) Which of these two values is a better approximation to the actual value of $\frac{a+b}{2}$?

Answer: (a) We compute that $a+b$ rounds to 2.0 using two-digit rounding arithmetic, and therefore $\frac{a+b}{2}$ rounds to 1.0.
(b) Now, we compute that $\frac{b-a}{2}$ rounds to 0.015 , and $a+0.15$ rounds to 0.98 .
(c) The result in (b) is considerably better than that in (a), because it is between the values of a and b. The other result could lead to serious errors.
2. Find the rates of convergence of the following functions as $n \rightarrow \infty$:
a. $\lim _{n \rightarrow \infty} \sin \frac{1}{n}=0$
b. $\lim _{n \rightarrow \infty} \sin \frac{1}{n^{2}}=0$
c. $\lim _{n \rightarrow \infty}\left(\sin \frac{1}{n}\right)^{2}=0$
d. $\quad \lim _{n \rightarrow \infty} \log (n+1)-\log (n)=0$

Answer: The first three problems can be answered much more easily if we know that $\sin x \leq x$ for $0 \leq x<1$. (Much more than this is true, but this inequality suffices.) As a result, we have $\left|\sin \left(\frac{1}{n}\right)\right|<\frac{1}{n}$, and so $\sin \frac{1}{n}=O\left(\frac{1}{n}\right)$. Similarly, $\left|\sin \left(\frac{1}{n^{2}}\right)\right|<\left|\frac{1}{n^{2}}\right|$, and so $\sin \left(\frac{1}{n^{2}}\right)=O\left(\frac{1}{n^{2}}\right)$. We also can take the inequality $\left|\sin \left(\frac{1}{n}\right)\right|<\frac{1}{n}$ and square both sides, giving $\left|\sin \left(\frac{1}{n}\right)\right|^{2}<\frac{1}{n^{2}}$, and therefore $\left(\sin \frac{1}{n}\right)^{2}=O\left(\frac{1}{n^{2}}\right)$.

The last one is a bit more interesting. We rewrite $\log (n+1)-\log (n)$ as $\log \left(1+\frac{1}{n}\right)$, and now use the fact that $|\log (1+x)|<|x|$ for $0<x<1$. Therefore, $|\log (n+1)-\log (n)|<\frac{1}{n}$, and so $\log (n+1)-\log (n)=O\left(\frac{1}{n}\right)$.
3. Find the rates of convergence of the following functions as $h \rightarrow 0$:
a. $\quad \lim _{h \rightarrow 0} \frac{\sin h}{h}=1$
b. $\lim _{h \rightarrow 0} \frac{1-\cos h}{h}=0$
c. $\quad \lim _{h \rightarrow 0} \frac{\sin h-h \cos h}{h}=0$
d. $\lim _{h \rightarrow 0} \frac{1-e^{h}}{h}=-1$

Answer: Here, Maclaurin series are the easiest way to get a solution:

$$
\frac{\sin h}{h}=\frac{h-\frac{h^{3}}{6}+\cdots}{h}=1-\frac{h^{2}}{6}+\cdots
$$

and so $\frac{\sin h}{h}=1+O\left(h^{2}\right)$.

For \mathbf{b}, we have

$$
\frac{1-\cos h}{h}=\frac{1-\left(1-\frac{h^{2}}{2}+\cdots\right)}{h}=\frac{h}{2}+\cdots,
$$

so $\frac{1-\cos h}{h}=O(h)$.
For \mathbf{c}, we have

$$
\frac{\sin h-h \cos h}{h}=\frac{\left(h-\frac{h^{3}}{6}+\cdots\right)-h\left(1-\frac{h^{2}}{4}+\cdots\right)}{h}=\frac{-h^{2}}{6}+\frac{h^{2}}{4}
$$

so $\frac{\sin h-h \cos h}{h}=O\left(h^{2}\right)$.
Finally, for d, we have

$$
\frac{1-e^{h}}{h}=\frac{1-\left(1+h+\frac{h^{2}}{2}+\cdots\right)}{h}=-1-\frac{h}{2}+\cdots
$$

so $\frac{1-e^{h}}{h}=-1+O(h)$.
4. Suppose that $0<q<p$ and $\alpha_{n}=\alpha+O\left(n^{-p}\right)$. Show that $\alpha_{n}=\alpha+O\left(n^{-q}\right)$.

Answer: The definition says that for sufficiently large n and for some positive constant K, $\left|\alpha_{n}-\alpha\right|<K n^{-p}$. Because $q<p$, we know that $n^{-p}<n^{-q}$. Therefore, $\left|\alpha_{n}-\alpha\right|<K n^{-q}$, which in turn says that $\alpha_{n}=\alpha+O\left(n^{-q}\right)$.
5. Suppose that $0<q<p$ and $F(h)=L+O\left(h^{p}\right)$. Show that $F(h)=L+O\left(h^{q}\right)$.

Answer: The definition says that for sufficiently small positive real numbers h and some positive constant $K,|F(h)-L|<K\left|h^{p}\right|$. Again, because $q<p$ and $|h|<1,\left|h^{p}\right|<\left|h^{q}\right|$. This means that $|F(h)-L|<K\left|h^{q}\right|$, which in turn means that $F(h)=L+O\left(h^{q}\right)$.
6. Use the bisection method to find a solution accurate to within 0.01 for the equation $x^{4}-2 x^{3}-4 x^{2}+4 x+4=0$ on the interval $[-1,4]$.
Answer: Here is a chart of the results, with a the left-hand endpoint of the bounding interval, b the right-hand endpoint of the bounding interval, and m the midpoint of the bounding interval at each stage:

n	a	b	m	$f(m)$
1	-1	4	1.5000	-0.6875
2	1.5000	4	2.7500	0.3477
3	1.5000	2.7500	2.1250	-4.3630
4	2.1250	2.7500	2.4375	-3.6797
5	2.4375	2.7500	2.5938	-2.1745
6	2.5938	2.7500	2.6719	-1.0526
7	2.6719	2.7500	2.7109	-0.3888
8	2.7109	2.7500	2.7305	-0.0299
9	2.7305	2.7500	2.7402	0.1565
10	2.7305	2.7402	2.7354	0.0627

This tells us that a root is between 2.7305 and 2.7354
7. Let $f(x)=x^{4}+2 x^{2}-x-3$. Use algebraic manipulations to show that each of the following functions has a fixed point at p if and only if $f(p)=0$:
a. $\quad g_{1}(x)=\left(3+x-2 x^{2}\right)^{1 / 4}$
b. $\quad g_{2}(x)=\left(\frac{x+3-x^{4}}{2}\right)^{1 / 2}$
c. $g_{3}(x)=\left(\frac{x+3}{x^{2}+2}\right)^{1 / 2}$
d. $g_{4}(x)=\frac{3 x^{4}+2 x^{2}+3}{4 x^{3}+4 x-1}$

Answer: (a) Start with $x^{4}+2 x^{2}-x-3=0$, and move the last three terms to the righthand side of the equation, yielding $x^{4}=-2 x^{2}+x+3$. Take fourth roots, and we have $x=\left(3+x-2 x^{2}\right)^{1 / 4}$. So a fixed point of $g_{1}(x)=\left(3+x-2 x^{2}\right)^{1 / 4}$ will be a root of the original equation. The algebra here is reversible, yielding the "if and only if" conclusion.
(b) Start with $x^{4}+2 x^{2}-x-3=0$, and now move all but the quadratic term to the right-hand side of the equation, yielding $2 x^{2}=-x^{4}+x+3$. Divide by 2 and take square roots to get $x=\left(\left(3+x-x^{4}\right) / 2\right)^{1 / 2}$. Again, we can see that this process is reversible.
(c) Start with $x^{4}+2 x^{2}-x-3=0$, and move the last two terms to the right-hand side, yielding $x^{4}+2 x^{2}=x+3$. Factor the left-hand side into $x^{2}\left(x^{2}+2\right)$, divide by $x^{2}+2$, and take square roots, and we get $x=\left((x+3) /\left(x^{2}+2\right)\right)^{1 / 2}$.
(d) This is Newton's method in disguise. Start with $x^{4}+2 x^{2}-x-3=0$, and divide both sides by $-\left(4 x^{3}+4 x-1\right)$, yielding $-\left(x^{4}+2 x^{2}-x-3\right) /\left(4 x^{3}+4 x-1\right)=0$. Now add x to both sides, yielding $x-\left(x^{4}+2 x^{2}-x-3\right) /\left(4 x^{3}+4 x-1\right)=x$. Simplify the left-hand side, and we get $\left(3 x^{4}+2 x^{2}+3\right) /\left(4 x^{3}+4 x-1\right)=x$. Again, the process is reversible.
8. Use the functions $g_{k}(x)$ in the previous problem and perform four iterations (if possible, without dividing by 0 or taking the square root of a negative number), starting with $p_{0}=1$ and $g_{k}\left(p_{n}\right)=p_{n+1}$. Which of the four functions seems to give the best approximation to a solution of the equation $f(x)=0$?
Answer: I computed the following:

n	$g_{1}\left(p_{n}\right)$	$g_{2}\left(p_{n}\right)$	$g_{3}\left(p_{n}\right)$	$g_{4}\left(p_{n}\right)$
0	1.1892	1.2247	1.1547	1.1429
1	1.0801	0.9937	1.1164	1.1245
2	1.1497	1.2286	1.1261	1.1241
3	1.1078	0.9875	1.1236	1.1241
4	1.1339	1.2322	1.1242	1.1241

Clearly, $g_{4}(x)$ is converging to the fixed point quicker than any of the other three functions.

