
MT414: Numerical Analysis
Homework 2

Answers

1. Let a = 0.96 and b = 0.99.

(a) Using two-digit rounding arithmetic, compute
a + b

2
.

(b) Using two-digit rounding arithmetic, compute a +
b − a

2
.

(c) Which of these two values is a better approximation to the actual value of
a + b

2
?

Answer: (a) We compute that a + b rounds to 2.0 using two-digit rounding arithmetic,

and therefore
a + b

2
rounds to 1.0.

(b) Now, we compute that
b − a

2
rounds to 0.015, and a + 0.15 rounds to 0.98.

(c) The result in (b) is considerably better than that in (a), because it is between the
values of a and b. The other result could lead to serious errors.

2. Find the rates of convergence of the following functions as n → ∞:

a. lim
n→∞

sin
1

n
= 0 b. lim

n→∞

sin
1

n2
= 0

c. lim
n→∞

(

sin
1

n

)2

= 0 d. lim
n→∞

log(n + 1) − log(n) = 0

Answer: The first three problems can be answered much more easily if we know that
sin x ≤ x for 0 ≤ x < 1. (Much more than this is true, but this inequality suffices.) As a
result, we have | sin

(

1

n

)

| < 1

n
, and so sin 1

n
= O( 1

n
). Similarly, | sin

(

1

n2

)

| <
∣

∣

1

n2

∣

∣, and so

sin
(

1

n2

)

= O( 1

n2 ). We also can take the inequality | sin
(

1

n

)

| < 1

n and square both sides,

giving | sin
(

1

n

)

|2 < 1

n2 , and therefore
(

sin 1

n

)2
= O( 1

n2 ).

The last one is a bit more interesting. We rewrite log(n+1)−log(n) as log
(

1 + 1

n

)

, and
now use the fact that | log(1+x)| < |x| for 0 < x < 1. Therefore, | log(n+1)− log(n)| < 1

n ,
and so log(n + 1) − log(n) = O( 1

n ).

3. Find the rates of convergence of the following functions as h → 0:

a. lim
h→0

sin h

h
= 1 b. lim

h→0

1 − cos h

h
= 0

c. lim
h→0

sin h − h cos h

h
= 0 d. lim

h→0

1 − eh

h
= −1

Answer: Here, Maclaurin series are the easiest way to get a solution:

sin h

h
=

h − h3

6
+ · · ·

h
= 1 −

h2

6
+ · · ·

and so sin h
h = 1 + O(h2).



For b, we have

1 − cos h

h
=

1 − (1 − h2

2
+ · · ·)

h
=

h

2
+ · · · ,

so 1−cos h
h = O(h).

For c, we have

sin h − h cos h

h
=

(h − h3

6
+ · · ·) − h(1 − h2

4
+ · · ·)

h
=

−h2

6
+

h2

4

so sin h−h cos h
h

= O(h2).
Finally, for d, we have

1 − eh

h
=

1 − (1 + h + h2

2
+ · · ·)

h
= −1 −

h

2
+ · · · ,

so 1−eh

h
= −1 + O(h).

4. Suppose that 0 < q < p and αn = α + O(n−p). Show that αn = α + O(n−q).

Answer: The definition says that for sufficiently large n and for some positive constant K,
|αn − α| < Kn−p. Because q < p, we know that n−p < n−q. Therefore, |αn − α| < Kn−q,
which in turn says that αn = α + O(n−q).

5. Suppose that 0 < q < p and F (h) = L + O(hp). Show that F (h) = L + O(hq).

Answer: The definition says that for sufficiently small positive real numbers h and some
positive constant K, |F (h) − L| < K|hp|. Again, because q < p and |h| < 1, |hp| < |hq|.
This means that |F (h) − L| < K|hq|, which in turn means that F (h) = L + O(hq).

6. Use the bisection method to find a solution accurate to within 0.01 for the equation
x4 − 2x3 − 4x2 + 4x + 4 = 0 on the interval [−1, 4].

Answer: Here is a chart of the results, with a the left-hand endpoint of the bounding
interval, b the right-hand endpoint of the bounding interval, and m the midpoint of the
bounding interval at each stage:

n a b m f(m)
1 −1 4 1.5000 −0.6875
2 1.5000 4 2.7500 0.3477
3 1.5000 2.7500 2.1250 −4.3630
4 2.1250 2.7500 2.4375 −3.6797
5 2.4375 2.7500 2.5938 −2.1745
6 2.5938 2.7500 2.6719 −1.0526
7 2.6719 2.7500 2.7109 −0.3888
8 2.7109 2.7500 2.7305 −0.0299
9 2.7305 2.7500 2.7402 0.1565

10 2.7305 2.7402 2.7354 0.0627



This tells us that a root is between 2.7305 and 2.7354.

7. Let f(x) = x4 + 2x2 − x − 3. Use algebraic manipulations to show that each of the
following functions has a fixed point at p if and only if f(p) = 0:

a. g1(x) = (3 + x − 2x2)1/4
b. g2(x) =

(

x + 3 − x4

2

)1/2

c. g3(x) =

(

x + 3

x2 + 2

)1/2

d. g4(x) =
3x4 + 2x2 + 3

4x3 + 4x − 1

Answer: (a) Start with x4 + 2x2 − x − 3 = 0, and move the last three terms to the right-
hand side of the equation, yielding x4 = −2x2 + x + 3. Take fourth roots, and we have
x = (3 + x − 2x2)1/4. So a fixed point of g1(x) = (3 + x − 2x2)1/4 will be a root of the
original equation. The algebra here is reversible, yielding the “if and only if” conclusion.

(b) Start with x4 + 2x2 − x − 3 = 0, and now move all but the quadratic term to the
right-hand side of the equation, yielding 2x2 = −x4 + x + 3. Divide by 2 and take square
roots to get x = ((3 + x − x4)/2)1/2. Again, we can see that this process is reversible.

(c) Start with x4 + 2x2 − x − 3 = 0, and move the last two terms to the right-hand
side, yielding x4 + 2x2 = x +3. Factor the left-hand side into x2(x2 + 2), divide by x2 + 2,
and take square roots, and we get x = ((x + 3)/(x2 + 2))1/2.

(d) This is Newton’s method in disguise. Start with x4 + 2x2 − x− 3 = 0, and divide
both sides by −(4x3 + 4x− 1), yielding −(x4 + 2x2 − x− 3)/(4x3 + 4x− 1) = 0. Now add
x to both sides, yielding x− (x4 + 2x2 − x− 3)/(4x3 + 4x− 1) = x. Simplify the left-hand
side, and we get (3x4 + 2x2 + 3)/(4x3 + 4x − 1) = x. Again, the process is reversible.

8. Use the functions gk(x) in the previous problem and perform four iterations (if possible,
without dividing by 0 or taking the square root of a negative number), starting with p0 = 1
and gk(pn) = pn+1. Which of the four functions seems to give the best approximation to
a solution of the equation f(x) = 0?

Answer: I computed the following:

n g1(pn) g2(pn) g3(pn) g4(pn)
0 1.1892 1.2247 1.1547 1.1429
1 1.0801 0.9937 1.1164 1.1245
2 1.1497 1.2286 1.1261 1.1241
3 1.1078 0.9875 1.1236 1.1241
4 1.1339 1.2322 1.1242 1.1241

Clearly, g4(x) is converging to the fixed point quicker than any of the other three
functions.


