MT414: Numerical Analysis

Homework 3
Due October 6, 2006

1. On last week's homework, we used the bisection method to find a solution for the equation $x^{4}-2 x^{3}-4 x^{2}+4 x+4=0$ on the interval $[-1,4]$.
(a) Perform 4 iterations of Newton's method to solve the same equation with $p_{0}=-1$.
(b) Perform 4 iterations of Newton's method to solve the same equation with $p_{0}=4$.
(c) Perform 4 iterations of the secant method with $p_{0}=-1$ and $p_{1}=4$ to solve the same equation.
(d) Perform 4 iterations of the secant method with $p_{0}=4$ and $p_{1}=-1$ to solve the same equation.
(e) Perform 4 iterations of the method of false position with $p_{0}=-1$ and $p_{1}=4$ to solve the same equation.
2. Let $f(x)=x \sin x$.
(a) Show that $f(x)$ has a double zero at $x=0$.
(b) Let $p_{0}=1.5$, and perform 3 iterations of Newton's method to try to find the root.
(c) Let $\mu(x)=f(x) / f^{\prime}(x)$. Perform 3 iterations of Newton's method using the function $\mu(x)$ to try to find the root. Is the convergence noticeably quicker than for $f(x)$?
3. The ordinary annuity equation is

$$
A=\frac{P}{i}\left(1-(1+i)^{-n}\right)
$$

where A is the amount of money to be borrowed, P is the amount of each payment, i is the interest rate per period, and there are n equally spaced payments. Suppose that a buyer needs a 30 -year home mortgage of $\$ 135,000$, with payments of at most $\$ 1,000$ per month. (This means that there are 360 payments in all.) What is the maximal annual interest rate that the buyer can afford?
4. Suppose that $f(x)$ has m continuous derivatives (in our usual notation, f is C^{m}). Modify the proof of Theorem 2.10 in the text to show that f has a zero of multiplicity m at p if and only if $f(p)=f^{\prime}(p)=f^{\prime \prime}(p)=\cdots=f^{(m-1)}(p)=0$ and $f^{(m)}(p) \neq 0$.
5. Given a function $f(x)$ with continuous second derivative, let

$$
g(x)=x-\frac{f(x)}{f^{\prime}(x)}-\frac{f^{\prime \prime}(x)}{2 f^{\prime}(x)}\left(\frac{f(x)}{f^{\prime}(x)}\right)^{2} .
$$

(a) Suppose that $f(p)=0$. Show that $g^{\prime}(p)=g^{\prime \prime}(p)=0$. This means (you do not need to check this) that often the series $p_{n}=g\left(p_{n-1}\right)$ will converge cubically.
(b) Let $f(x)=x^{4}-2 x^{3}-4 x^{2}+4 x+4$. Iterate $g(x)$ twice with a starting point of $p_{0}=-1$. Is the result better than using the standard Newton's method?

