
MT414: Numerical Analysis
Homework 3

Answers

1. On last week’s homework, we used the bisection method to find a solution for the
equation x4 − 2x3 − 4x2 + 4x + 4 = 0 on the interval [−1, 4].

(a) Perform 4 iterations of Newton’s method to solve the same equation with p0 = −1.

(b) Perform 4 iterations of Newton’s method to solve the same equation with p0 = 4.

(c) Perform 4 iterations of the secant method with p0 = −1 and p1 = 4 to solve the
same equation.

(d) Perform 4 iterations of the secant method with p0 = 4 and p1 = −1 to solve the
same equation.

(e) Perform 4 iterations of the method of false position with p0 = −1 and p1 = 4 to
solve the same equation.

Answer: (a) We set g(x) = x−(x4−2x3−4x2 +4x+4)/(4x3−6x2−8x+4), p0 = −1, and
g(pn−1) = pn. I compute p1 = −0.5000, p2 = −0.7188, 1p3 = −0.7319, and p4 = −0.7321.

(b) With the same definition of g(x) and p0 = 4, I compute p1 = 3.3636, p2 = 2.9714,
p3 = 2.7834, and p4 = 2.7352.

(c) Now we set pn+1 = g(pn) = pn − f(pn)(pn − pn−1)/(f(pn) − f(pn−1)), where
f(x) = x4 − 2x3 − 4x2 + 4x + 4. We start with p0 = −1 and p1 = 4, and I compute
p2 = −0.9412, p3 = −0.8913, p4 = −0.6748, and p5 = −0.7402.

(d) We do the same thing, with p0 = 4 and p1 = −1, and now I compute p2 = −0.9412,
p3 = −0.5918, p4 = −0.7572, and p5 = −0.7340.

(e) This one is a bit trickier. We use the essentially the same formula as above,
starting with p0 = −1 and p1 = 4, to get p2 = −0.9412. Because f(−0.9412) < 0, we
now do the same thing with the two points −0.9412 and 4, getting p3 = −0.8913. Because
f(−0.8913) < 0, we now do the same thing with the two points −0.8913 and 4, getting
p4 = −0.8512. Because f(−0.8512) < 0, we now use the two points −0.8512 and 4 to get
p5 = −0.8199.

2. Let f(x) = x sinx.

(a) Show that f(x) has a double zero at x = 0.

(b) Let p0 = 1.5, and perform 3 iterations of Newton’s method to try to find the root.

(c) Let µ(x) = f(x)/f ′(x). Perform 3 iterations of Newton’s method using the
function µ(x) to try to find the root. Is the convergence noticeably quicker than
for f(x)?

Answer: (a) We have f ′(x) = x cosx + sin x, and so f(0) = f ′(0) = 0. On the other hand,
f ′′(x) = −x sin x + 2 cos x, and so f ′′(0) = 2.

(b) We iterate g(x) = x − x sinx/(x cosx + sin x), and get p1 = 0.1442, p2 = 0.0719,
and p3 = 0.0359.

(c) Setting µ(x) = x sinx/(sin x + x cosx), and iterating g1(x) = x − µ(x)/µ′(x), I
compute p1 = 0.9911, p2 = 0.3112, and p3 = 0.0100. Though the initial point is further
from the solution, obviously we have converged quicker by p3.



3. The ordinary annuity equation is

A =
P

i
(1 − (1 + i)−n),

where A is the amount of money to be borrowed, P is the amount of each payment, i is the
interest rate per period, and there are n equally spaced payments. Suppose that a buyer
needs a 30-year home mortgage of $135,000, with payments of at most $1,000 per month.
(This means that there are 360 payments in all.) What is the maximal annual interest
rate that the buyer can afford?

Answer: We have A = 135000, P = 1000, and n = 360, and we need to solve for i. In
other words, we have the equation 135000i = 1000(1 − (1 + i)−360). Divide by 1000, and
let f(x) = 135x− 1 + (1 + x)−360, and iterate g(x) = x− f(x)/f ′(x) with p0 = 0.5, to get
p1 = 0.0074, and p2 = 0.0068 and p3 = 0.0067. The solution appears to be stable at that
point.

Thus, the monthly interest rate is .67%. To find the annual interest rate, add 1 and
raise to the twelfth power (because there are 12 months in a year), yielding 1.0841. This
works out to an annual percentage rate of 8.41%. If instead, you multiply the monthly
rate by 12 (which is not really correct), you get an annual rate of 8.1%.

4. Suppose that f(x) has m continuous derivatives (in our usual notation, f is Cm).
Modify the proof of Theorem 2.10 in the text to show that f has a zero of multiplicity m
at p if and only if f(p) = f ′(p) = f ′′(p) = · · · = f (m−1)(p) = 0 and f (m)(p) 6= 0.

Answer: Assume first that f has a root of multiplicity m. Then we can write f(x) =
(x − p)mq(x), where q(p) 6= 0. Then x − p will divide f ′(x) and f ′′(x) all the way up
to f (m−1)(x), meaning that f ′(p) = f ′′(p) = f (3)(p) = · · · = f (m−1)(p) = 0. However,
f (m)(p) = m!q(p) 6= 0.

On the other hand, assume that f(p) = f ′(p) = f ′′(p) = · · · = f (m−1)(p) = 0 and
f (m)(p) 6= 0. We can write f(x) as a degree m Taylor polynomial:

f(x) = f(p)+(x−p)f ′(p)+
(x − p)2

2!
f ′′(p)+ · · ·+

f (m−1)(p)

(m − 1)!
(x−p)m−1 +

f (m)(ξ)

m!
(x−p)m.

Most of the terms vanish, and we are left with f(x) = (x− p)mq(x), where q(x) is defined
to be the necessary factor to make this equation work.

5. Given a function f(x) with continuous second derivative, let

g(x) = x −
f(x)

f ′(x)
−

f ′′(x)

2f ′(x)

(

f(x)

f ′(x)

)2

.

(a) Suppose that f(p) = 0. Show that g′(p) = g′′(p) = 0. This means (you do not
need to check this) that often the series pn = g(pn−1) will converge cubically.

(b) Let f(x) = x4 − 2x3 − 4x2 + 4x + 4. Iterate g(x) twice with a starting point of
p0 = −1. Is the result better than using the standard Newton’s method?



Answer: We compute

g′(x) = 1 −
f ′(x)2 − f(x)f ′′(x)

f ′(x)2
−

(

2f ′(x)f (3)(x) − 2f ′′(x)2

4f ′(x)2

) (

f(x)

f ′(x)

)2

−
f ′′(x)

f ′(x)

(

f(x)

f ′(x)

)(

f ′(x)2 − f(x)f ′′(x)

f ′(x)2

)

=
3f(x)2f ′′(x)2

2f ′(x)4
−

f(x)2f (3)(x)

2f ′(x)3

We can now use the fact that f(p) = 0 to conclude that g′(p) = 0.
We can do more, by noticing that we can write g′(x) = f(x)2q(x), and therefore

g′′(x) = f(x)2q′(x) + 2f(x)q(x), which lets us see instantly that g′′(p) = 0.
(b) I compute that p1 = −1.5000 and p2 = −1.4170. A further iteration yields

p3 = −1.4142, and the sequence seems to stabilize at this point.


