MT414: Numerical Analysis
Homework 3
Answers

1. On last week’s homework, we used the bisection method to find a solution for the
equation z* — 223 — 422 + 4z + 4 = 0 on the interval [—1,4].

(a) Perform 4 iterations of Newton’s method to solve the same equation with py = —1.
(b) Perform 4 iterations of Newton’s method to solve the same equation with pg = 4.
(¢) Perform 4 iterations of the secant method with po = —1 and p; = 4 to solve the

same equation.

(d) Perform 4 iterations of the secant method with pg = 4 and p; = —1 to solve the
same equation.

(e) Perform 4 iterations of the method of false position with pg = —1 and p; = 4 to
solve the same equation.

Answer: (a) We set g(x) = o — (2* — 223 —42? + 4w +4) /(423 — 62% —8x+4), po = —1, and
9(Pn—1) = pn. I compute p; = —0.5000, p, = —0.7188, 1p3 = —0.7319, and p, = —0.7321.

(b) With the same definition of g(x) and pg = 4, I compute p; = 3.3636, p; = 2.9714,
p3 = 2.7834, and py = 2.7352.

(¢) Now we set pny1 = g(pn) = pn = f(Pn)(Pn — Pn—1)/(f(Pn) — f(Pn-1)), where
f(x) = 2* — 22® — 42 + 42 + 4. We start with pgp = —1 and p; = 4, and I compute
po = —0.9412, p3 = —0.8913, ps = —0.6748, and ps = —0.7402.

(d) We do the same thing, with py = 4 and p; = —1, and now I compute py = —0.9412,
p3 = —0.5918, py = —0.7572, and ps = —0.7340.

(e) This one is a bit trickier. We use the essentially the same formula as above,
starting with pg = —1 and p; = 4, to get po = —0.9412. Because f(—0.9412) < 0, we
now do the same thing with the two points —0.9412 and 4, getting ps = —0.8913. Because
f(—0.8913) < 0, we now do the same thing with the two points —0.8913 and 4, getting
ps = —0.8512. Because f(—0.8512) < 0, we now use the two points —0.8512 and 4 to get
ps = —0.8199.

2. Let f(x) = zsinz.
(a) Show that f(z) has a double zero at = = 0.
(b) Let pg = 1.5, and perform 3 iterations of Newton’s method to try to find the root.
(¢) Let p(x) = f(x)/f'(z). Perform 3 iterations of Newton’s method using the
function p(z) to try to find the root. Is the convergence noticeably quicker than
for f(x)?
Answer: (a) We have f/'(z) = x cosz +sinz, and so f(0) = f/(0) = 0. On the other hand,
f"(z) = —xsinz + 2cosz, and so f”(0) = 2.
(b) We iterate g(x) = ¢ — xsinx/(z cosx + sinx), and get p; = 0.1442, p, = 0.0719,
and p3 = 0.0359.
(¢) Setting pu(x) = xsinz/(sinz + zcosx), and iterating ¢1(z) = = — p(z) /1 (z), 1
compute p; = 0.9911, po = 0.3112, and p3 = 0.0100. Though the initial point is further
from the solution, obviously we have converged quicker by ps.



3. The ordinary annuity equation is

a=2a- e,
where A is the amount of money to be borrowed, P is the amount of each payment, 7 is the
interest rate per period, and there are n equally spaced payments. Suppose that a buyer
needs a 30-year home mortgage of $135,000, with payments of at most $1,000 per month.
(This means that there are 360 payments in all.) What is the maximal annual interest
rate that the buyer can afford?

Answer: We have A = 135000, P = 1000, and n = 360, and we need to solve for i. In
other words, we have the equation 135000i = 1000(1 — (1 + 7)~359). Divide by 1000, and
let f(z) =135z — 1+ (14 2)73%° and iterate g(z) = x — f(x)/f'(x) with py = 0.5, to get
p1 = 0.0074, and p, = 0.0068 and p3 = 0.0067. The solution appears to be stable at that
point.

Thus, the monthly interest rate is .67%. To find the annual interest rate, add 1 and
raise to the twelfth power (because there are 12 months in a year), yielding 1.0841. This
works out to an annual percentage rate of 8.41%. If instead, you multiply the monthly
rate by 12 (which is not really correct), you get an annual rate of 8.1%.

4. Suppose that f(x) has m continuous derivatives (in our usual notation, f is C™).
Modify the proof of Theorem 2.10 in the text to show that f has a zero of multiplicity m
at p if and only if f(p) = f'(p) = f"(p) = - = f" " (p) = 0 and fU™)(p) # 0.

Answer: Assume first that f has a root of multiplicity m. Then we can write f(z) =
(x — p)™q(x), where q(p) # 0. Then x — p will divide f’(x) and f”(x) all the way up

to f(m=1(z), meaning that f'(p) = f"(p) = f®(p) = --- = f™=D(p) = 0. However,
F™(p) = mlq(p) # 0.
On the other hand, assume that f(p) = f'(p) = f"(p) = --- = f™ D(p) = 0 and
£ (p) # 0. We can write f(z) as a degree m Taylor polynomial:
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Most of the terms vanish, and we are left with f(z) = (x — p)™q(x), where g(z) is defined
to be the necessary factor to make this equation work.

5. Given a function f(z) with continuous second derivative, let
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(a) Suppose that f(p) = 0. Show that ¢’(p) = ¢’’(p) = 0. This means (you do not
need to check this) that often the series p,, = g(p,—1) will converge cubically.

(b) Let f(x) = o* — 223 — 422 4 42 + 4. Tterate g(z) twice with a starting point of
po = —1. Is the result better than using the standard Newton’s method?

g(x) =z —



Answer: We compute
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We can now use the fact that f(p) = 0 to conclude that ¢'(p) = 0.

We can do more, by noticing that we can write ¢’'(z) = f(z)?q(x), and therefore
g"(z) = f(2)%¢' (z) + 2f(z)q(x), which lets us see instantly that g”(p) = 0.

(b) T compute that p; = —1.5000 and p; = —1.4170. A further iteration yields
p3 = —1.4142, and the sequence seems to stabilize at this point.



