MT414: Numerical Analysis

Homework 3
Answers

1. On last week's homework, we used the bisection method to find a solution for the equation $x^{4}-2 x^{3}-4 x^{2}+4 x+4=0$ on the interval $[-1,4]$.
(a) Perform 4 iterations of Newton's method to solve the same equation with $p_{0}=-1$.
(b) Perform 4 iterations of Newton's method to solve the same equation with $p_{0}=4$.
(c) Perform 4 iterations of the secant method with $p_{0}=-1$ and $p_{1}=4$ to solve the same equation.
(d) Perform 4 iterations of the secant method with $p_{0}=4$ and $p_{1}=-1$ to solve the same equation.
(e) Perform 4 iterations of the method of false position with $p_{0}=-1$ and $p_{1}=4$ to solve the same equation.
Answer: (a) We set $g(x)=x-\left(x^{4}-2 x^{3}-4 x^{2}+4 x+4\right) /\left(4 x^{3}-6 x^{2}-8 x+4\right), p_{0}=-1$, and $g\left(p_{n-1}\right)=p_{n}$. I compute $p_{1}=-0.5000, p_{2}=-0.7188,1 p_{3}=-0.7319$, and $p_{4}=-0.7321$.
(b) With the same definition of $g(x)$ and $p_{0}=4$, I compute $p_{1}=3.3636, p_{2}=2.9714$, $p_{3}=2.7834$, and $p_{4}=2.7352$.
(c) Now we set $p_{n+1}=g\left(p_{n}\right)=p_{n}-f\left(p_{n}\right)\left(p_{n}-p_{n-1}\right) /\left(f\left(p_{n}\right)-f\left(p_{n-1}\right)\right)$, where $f(x)=x^{4}-2 x^{3}-4 x^{2}+4 x+4$. We start with $p_{0}=-1$ and $p_{1}=4$, and I compute $p_{2}=-0.9412, p_{3}=-0.8913, p_{4}=-0.6748$, and $p_{5}=-0.7402$.
(d) We do the same thing, with $p_{0}=4$ and $p_{1}=-1$, and now I compute $p_{2}=-0.9412$, $p_{3}=-0.5918, p_{4}=-0.7572$, and $p_{5}=-0.7340$.
(e) This one is a bit trickier. We use the essentially the same formula as above, starting with $p_{0}=-1$ and $p_{1}=4$, to get $p_{2}=-0.9412$. Because $f(-0.9412)<0$, we now do the same thing with the two points -0.9412 and 4 , getting $p_{3}=-0.8913$. Because $f(-0.8913)<0$, we now do the same thing with the two points -0.8913 and 4 , getting $p_{4}=-0.8512$. Because $f(-0.8512)<0$, we now use the two points -0.8512 and 4 to get $p_{5}=-0.8199$.
2. Let $f(x)=x \sin x$.
(a) Show that $f(x)$ has a double zero at $x=0$.
(b) Let $p_{0}=1.5$, and perform 3 iterations of Newton's method to try to find the root.
(c) Let $\mu(x)=f(x) / f^{\prime}(x)$. Perform 3 iterations of Newton's method using the function $\mu(x)$ to try to find the root. Is the convergence noticeably quicker than for $f(x)$?
Answer: (a) We have $f^{\prime}(x)=x \cos x+\sin x$, and so $f(0)=f^{\prime}(0)=0$. On the other hand, $f^{\prime \prime}(x)=-x \sin x+2 \cos x$, and so $f^{\prime \prime}(0)=2$.
(b) We iterate $g(x)=x-x \sin x /(x \cos x+\sin x)$, and get $p_{1}=0.1442, p_{2}=0.0719$, and $p_{3}=0.0359$.
(c) Setting $\mu(x)=x \sin x /(\sin x+x \cos x)$, and iterating $g_{1}(x)=x-\mu(x) / \mu^{\prime}(x)$, I compute $p_{1}=0.9911, p_{2}=0.3112$, and $p_{3}=0.0100$. Though the initial point is further from the solution, obviously we have converged quicker by p_{3}.

3. The ordinary annuity equation is

$$
A=\frac{P}{i}\left(1-(1+i)^{-n}\right),
$$

where A is the amount of money to be borrowed, P is the amount of each payment, i is the interest rate per period, and there are n equally spaced payments. Suppose that a buyer needs a 30 -year home mortgage of $\$ 135,000$, with payments of at most $\$ 1,000$ per month. (This means that there are 360 payments in all.) What is the maximal annual interest rate that the buyer can afford?
Answer: We have $A=135000, P=1000$, and $n=360$, and we need to solve for i. In other words, we have the equation $135000 i=1000\left(1-(1+i)^{-360}\right)$. Divide by 1000 , and let $f(x)=135 x-1+(1+x)^{-360}$, and iterate $g(x)=x-f(x) / f^{\prime}(x)$ with $p_{0}=0.5$, to get $p_{1}=0.0074$, and $p_{2}=0.0068$ and $p_{3}=0.0067$. The solution appears to be stable at that point.

Thus, the monthly interest rate is $.67 \%$. To find the annual interest rate, add 1 and raise to the twelfth power (because there are 12 months in a year), yielding 1.0841. This works out to an annual percentage rate of 8.41%. If instead, you multiply the monthly rate by 12 (which is not really correct), you get an annual rate of 8.1%.
4. Suppose that $f(x)$ has m continuous derivatives (in our usual notation, f is C^{m}). Modify the proof of Theorem 2.10 in the text to show that f has a zero of multiplicity m at p if and only if $f(p)=f^{\prime}(p)=f^{\prime \prime}(p)=\cdots=f^{(m-1)}(p)=0$ and $f^{(m)}(p) \neq 0$.
Answer: Assume first that f has a root of multiplicity m. Then we can write $f(x)=$ $(x-p)^{m} q(x)$, where $q(p) \neq 0$. Then $x-p$ will divide $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ all the way up to $f^{(m-1)}(x)$, meaning that $f^{\prime}(p)=f^{\prime \prime}(p)=f^{(3)}(p)=\cdots=f^{(m-1)}(p)=0$. However, $f^{(m)}(p)=m!q(p) \neq 0$.

On the other hand, assume that $f(p)=f^{\prime}(p)=f^{\prime \prime}(p)=\cdots=f^{(m-1)}(p)=0$ and $f^{(m)}(p) \neq 0$. We can write $f(x)$ as a degree m Taylor polynomial:

$$
f(x)=f(p)+(x-p) f^{\prime}(p)+\frac{(x-p)^{2}}{2!} f^{\prime \prime}(p)+\cdots+\frac{f^{(m-1)}(p)}{(m-1)!}(x-p)^{m-1}+\frac{f^{(m)}(\xi)}{m!}(x-p)^{m}
$$

Most of the terms vanish, and we are left with $f(x)=(x-p)^{m} q(x)$, where $q(x)$ is defined to be the necessary factor to make this equation work.
5. Given a function $f(x)$ with continuous second derivative, let

$$
g(x)=x-\frac{f(x)}{f^{\prime}(x)}-\frac{f^{\prime \prime}(x)}{2 f^{\prime}(x)}\left(\frac{f(x)}{f^{\prime}(x)}\right)^{2} .
$$

(a) Suppose that $f(p)=0$. Show that $g^{\prime}(p)=g^{\prime \prime}(p)=0$. This means (you do not need to check this) that often the series $p_{n}=g\left(p_{n-1}\right)$ will converge cubically.
(b) Let $f(x)=x^{4}-2 x^{3}-4 x^{2}+4 x+4$. Iterate $g(x)$ twice with a starting point of $p_{0}=-1$. Is the result better than using the standard Newton's method?

$$
\begin{aligned}
g^{\prime}(x)= & 1-\frac{f^{\prime}(x)^{2}-f(x) f^{\prime \prime}(x)}{f^{\prime}(x)^{2}}-\left(\frac{2 f^{\prime}(x) f^{(3)}(x)-2 f^{\prime \prime}(x)^{2}}{4 f^{\prime}(x)^{2}}\right)\left(\frac{f(x)}{f^{\prime}(x)}\right)^{2} \\
& -\frac{f^{\prime \prime}(x)}{f^{\prime}(x)}\left(\frac{f(x)}{f^{\prime}(x)}\right)\left(\frac{f^{\prime}(x)^{2}-f(x) f^{\prime \prime}(x)}{f^{\prime}(x)^{2}}\right) \\
= & \frac{3 f(x)^{2} f^{\prime \prime}(x)^{2}}{2 f^{\prime}(x)^{4}}-\frac{f(x)^{2} f^{(3)}(x)}{2 f^{\prime}(x)^{3}}
\end{aligned}
$$

We can now use the fact that $f(p)=0$ to conclude that $g^{\prime}(p)=0$.
We can do more, by noticing that we can write $g^{\prime}(x)=f(x)^{2} q(x)$, and therefore $g^{\prime \prime}(x)=f(x)^{2} q^{\prime}(x)+2 f(x) q(x)$, which lets us see instantly that $g^{\prime \prime}(p)=0$.
(b) I compute that $p_{1}=-1.5000$ and $p_{2}=-1.4170$. A further iteration yields $p_{3}=-1.4142$, and the sequence seems to stabilize at this point.

