MT414: Numerical Analysis Homework 4 Due October 27, 2006

- 1. Let $p_n = \frac{1}{n}$. Use the Aitken's Δ^2 -method to compute \hat{p}_n .
- 2. A sequence $\{p_n\}$ is superlinearly convergent to the limit p if

$$\lim_{n \to \infty} \left| \frac{p_{n+1} - p}{p_n - p} \right| = 0.$$

- (a) Show that if $p_n \to p$ of order $\alpha > 1$, then $\{p_n\}$ is superlinearly convergent to p.
- (b) Let $p_n = \frac{1}{n^n}$. Show that p_n is superlinearly convergent to 0, but that p_n does not converge to 0 with any order $\alpha > 1$.
- 3. Suppose that we have the following values for a function f(x):

x	f(x)
2.1	1.5602
2.2	1.4905
2.4	1.3833
2.5	1.3415

- (a) Compute 2 different quadratic Lagrange interpolating polynomials using first the points 2.1, 2.2, and 2.4, and then using the points 2.2, 2.4, and 2.5.
- (b) Compute the cubic Lagrange interpolating polynomial passing through all 4 of these points.
- (c) Using each of those 3 polynomials, estimate the value of f(2.3).
- 4. Suppose that we have the following values for a function g(x):

x	f(x)
3.3	2.6834
3.4	2.9812
3.5	3.3234
3.7	4.1707

Use Neville's method to estimate g(3.6).