MT414: Numerical Analysis
 Homework 4
 Due October 27, 2006

1. Let $p_{n}=\frac{1}{n}$. Use the Aitken's Δ^{2}-method to compute \hat{p}_{n}.
2. A sequence $\left\{p_{n}\right\}$ is superlinearly convergent to the limit p if

$$
\lim _{n \rightarrow \infty}\left|\frac{p_{n+1}-p}{p_{n}-p}\right|=0
$$

(a) Show that if $p_{n} \rightarrow p$ of order $\alpha>1$, then $\left\{p_{n}\right\}$ is superlinearly convergent to p.
(b) Let $p_{n}=\frac{1}{n^{n}}$. Show that p_{n} is superlinearly convergent to 0 , but that p_{n} does not converge to 0 with any order $\alpha>1$.
3. Suppose that we have the following values for a function $f(x)$:

x	$f(x)$
2.1	1.5602
2.2	1.4905
2.4	1.3833
2.5	1.3415

(a) Compute 2 different quadratic Lagrange interpolating polynomials using first the points $2.1,2.2$, and 2.4 , and then using the points $2.2,2.4$, and 2.5 .
(b) Compute the cubic Lagrange interpolating polynomial passing through all 4 of these points.
(c) Using each of those 3 polynomials, estimate the value of $f(2.3)$.
4. Suppose that we have the following values for a function $g(x)$:

x	$f(x)$
3.3	2.6834
3.4	2.9812
3.5	3.3234
3.7	4.1707

Use Neville's method to estimate $g(3.6)$.

