MT414: Numerical Analysis

Homework 5
Due November 6, 2006

1. Suppose that we have the following values for a function $f(x)$:

x	$f(x)$
2.1	1.5602
2.2	1.4905
2.4	1.3833
2.5	1.3415

Compute the free cubic spline interpolation for $f(x)$, and use it to estimate the value of $f(2.3)$.
2. Suppose that we have the following values for a function $g(x)$:

x	$f(x)$
3.3	2.6834
3.4	2.9812
3.5	3.3234
3.7	4.1707

Compute the free cubic spline interpolation for $g(x)$, and use it to estimate the value of $g(3.6)$.
3. Consider the following table of values of the sine function:

x	$\sin (x)$
0	0
$\frac{\pi}{2}$	1
π	0
$\frac{3 \pi}{2}$	-1
2π	0

Approximate π to at least 6 decimal places in the following computations.
(a) Compute the quartic Lagrange polynomial $L_{4}(x)$ that passes through all 5 of these points.
(b) Estimate $\sin \frac{\pi}{6}$ by computing $L_{4}\left(\frac{\pi}{6}\right)$.
(c) Compute the clamped cubic spline interpolant for these 5 points, using the obvious condition $S^{\prime}(0)=1$ and $S^{\prime}(2 \pi)=1$. (We can compute those values because we know the derivative of the sine function.)
(d) Estimate $\sin \frac{\pi}{6}$ by computing $S\left(\frac{\pi}{6}\right)$.
(e) Which approximation is more accurate?

