MT414: Numerical Analysis Homework 5 Due November 6, 2006

1. Suppose that we have the following values for a function f(x):

x	f(x)
2.1	1.5602
2.2	1.4905
2.4	1.3833
2.5	1.3415

Compute the free cubic spline interpolation for f(x), and use it to estimate the value of f(2.3).

2. Suppose that we have the following values for a function g(x):

x	f(x)
3.3	2.6834
3.4	2.9812
3.5	3.3234
3.7	4.1707

Compute the free cubic spline interpolation for g(x), and use it to estimate the value of g(3.6).

3. Consider the following table of values of the sine function:

x	$\sin(x)$
0	0
$\frac{\pi}{2}$	1
π^{-}	0
$\frac{3\pi}{2}$	-1
$\bar{2\pi}$	0

Approximate π to at least 6 decimal places in the following computations.

- (a) Compute the quartic Lagrange polynomial $L_4(x)$ that passes through all 5 of these points.
- (b) Estimate $\sin \frac{\pi}{6}$ by computing $L_4(\frac{\pi}{6})$.
- (c) Compute the clamped cubic spline interpolant for these 5 points, using the obvious condition S'(0) = 1 and $S'(2\pi) = 1$. (We can compute those values because we know the derivative of the sine function.)
- (d) Estimate $\sin \frac{\pi}{6}$ by computing $S(\frac{\pi}{6})$.
- (e) Which approximation is more accurate?