MT414: Numerical Analysis
 Homework 5
 Answers

1. Suppose that we have the following values for a function $f(x)$:

x	$f(x)$
2.1	1.5602
2.2	1.4905
2.4	1.3833
2.5	1.3415

Compute the free cubic spline interpolation for $f(x)$, and use it to estimate the value of $f(2.3)$.
Answer: We have $a_{0}=1.5602, a_{1}=1.4905, a_{2}=1.3833$, and $a_{3}=1.3415$. We also have $h_{0}=0.1, h_{1}=0.2$, and $h_{2}=0.1$. As a result, our matrix equation becomes:

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0.1 & 0.6 & 0.2 & 0 \\
0 & 0.2 & 0.6 & 0.1 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0.4830 \\
0.3540 \\
0
\end{array}\right]
$$

We can ignore first and last rows and first and last columns, because $c_{0}=c_{3}=0$, and get the augmented matrix:

$$
\left[\begin{array}{cc|c}
0.6 & 0.2 & 0.4830 \\
0.2 & 0.6 & 0.3540
\end{array}\right]
$$

Multiply the second row by 3 , and we get

$$
\left[\begin{array}{ll|l}
0.6 & 0.2 & 0.4830 \\
0.6 & 1.8 & 1.0620
\end{array}\right]
$$

Now add -1 times the first row to the second, and we have:

$$
\left[\begin{array}{ll|l}
0.6 & 0.2 & 0.4830 \\
0.0 & 1.6 & 0.5790
\end{array}\right]
$$

So $c_{2}=0.5790 / 1.6=0.3619$, and then $c_{1}=0.6844$.
Now, we apply $d_{j}=\frac{c_{j+1}-c_{j}}{3 h_{j}}$ to conclude that $d_{2}=-1.2063, d_{1}=-0.5375$, and $d_{0}=2.2812$. Applying $b_{j}=\frac{a_{j+1}-a_{j}}{3}-\frac{h_{j}}{3}\left(2 c_{j}+c_{j+1}\right)$ yields $b_{0}=-0.7198, b_{1}=-0.6514$, and $b_{2}=-0.4421$.

So our answer becomes

$$
S(x)= \begin{cases}1.5602-0.7198(x-2.1)+2.2812(x-2.1)^{3} & 2.1 \leq x \leq 2.2 \\ 1.4905-0.6514(x-2.2)+0.6844(x-2.2)^{2}-0.5375(x-2.2)^{3} & 2.2 \leq x \leq 2.4 \\ 1.3833-0.4421(x-2.4)+0.3619(x-2.4)^{2}-1.2063(x-2.4)^{3} & 2.4 \leq x \leq 2.5\end{cases}
$$

Though it is not necessary, you can simplify this to:

$$
S(x)=\left\{\begin{array}{lll}
+2.2812 x^{3}-14.3716 x^{2}+29.4604 x-18.0544 & 2.1 \leq x \leq 2.2 \\
-0.5375 x^{3}+4.2319 x^{2}-11.4672 x+11.9594 & 2.2 \leq x \leq 2.4 \\
-1.2063 x^{3}+9.0473 x^{2}-23.0241 x+21.2048 & 2.4 \leq x \leq 2.5
\end{array}\right.
$$

We can estimate $f(2.3)$ by computing $S(2.3)=1.4316$.
2. Suppose that we have the following values for a function $g(x)$:

x	$f(x)$
3.3	2.6834
3.4	2.9812
3.5	3.3234
3.7	4.1707

Compute the free cubic spline interpolation for $g(x)$, and use it to estimate the value of $g(3.6)$.
Answer: We have $\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=(2.6834,2.9812,3.3234,4.1707)$. We also have $\left(h_{0}, h_{1}, h_{2}\right)=(0.1,0.1,0.2)$. As a result, our matrix equation becomes:

$$
\left[\begin{array}{llll}
1.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.1000 & 0.4000 & 0.1000 & 0.0000 \\
0.0000 & 0.1000 & 0.6000 & 0.2000 \\
0.0000 & 0.0000 & 0.0000 & 1.0000
\end{array}\right]\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
0.0000 \\
1.3320 \\
2.4435 \\
0.0000
\end{array}\right]
$$

We can again ignore first and last rows and first and last columns, because $c_{0}=c_{3}=0$, and get the augmented matrix:

$$
\left[\begin{array}{ll|l}
0.4000 & 0.1000 & 1.3320 \\
0.1000 & 0.6000 & 2.4435
\end{array}\right]
$$

Divide the first row by 4 , and we have

$$
\left[\begin{array}{ll|l}
0.1000 & 0.0250 & 0.3330 \\
0.1000 & 0.6000 & 2.4435
\end{array}\right]
$$

Multiply by -1 and add to the second, and we get

$$
\left[\begin{array}{ll|l}
0.1000 & 0.0250 & 0.3330 \\
0.0000 & 0.5750 & 2.1105
\end{array}\right]
$$

So $c_{2}=3.6704$, and then $c_{1}=2.4124$. We then compute $\left(b_{0}, b_{1}, b_{2}\right)=(2.8976,3.1388,3.7471)$ and $\left(d_{0}, d_{1}, d_{2}\right)=(8.0413,4.1935,-6.1174)$.

So our answer becomes

$$
S(x)= \begin{cases}2.2834+2.8976(x-3.3)+8.0413(x-3.3)^{3} & 3.3 \leq x \leq 3.4 \\ 2.9812+3.1388(x-3.4)+2.4124(x-3.4)^{2}+4.1935(x-3.4)^{3} & 3.4 \leq x \leq 3.5 \\ 3.3234+3.7471(x-3.5)+3.6704(x-3.5)^{2}-6.1174(x-3.5)^{3} & 3.5 \leq x \leq 3.7\end{cases}
$$

Again, we can simplify this to:

$$
S(x)= \begin{cases}+8.0413 x^{3}-79.6089 x^{2}+265.6069 x-296.2589 & 3.3 \leq x \leq 3.4 \\ +4.1935 x^{3}-40.3613 x^{2}+132.1651 x-144.6247 & 3.4 \leq x \leq 3.5 \\ -6.1174 x^{3}+67.9031 x^{2}-246.7602 x+297.4545 & 3.5 \leq x \leq 3.7\end{cases}
$$

We have $S(3.6)=3.7287$.
3. Consider the following table of values of the sine function:

x	$\sin (x)$
0	0
$\frac{\pi}{2}$	1
π	0
$\frac{3 \pi}{2}$	-1
2π	0

Approximate π to at least 6 decimal places in the following computations.
(a) Compute the quartic Lagrange polynomial $L_{4}(x)$ that passes through all 5 of these points.
(b) Estimate $\sin \frac{\pi}{6}$ by computing $L_{4}\left(\frac{\pi}{6}\right)$.
(c) Compute the clamped cubic spline interpolant for these 5 points, using the obvious condition $S^{\prime}(0)=1$ and $S^{\prime}(2 \pi)=1$. (We can compute those values because we know the derivative of the sine function.)
(d) Estimate $\sin \frac{\pi}{6}$ by computing $S\left(\frac{\pi}{6}\right)$.
(e) Which approximation is more accurate?

Answer: (a) We need not write out the terms which reduce to 0 , so we get

$$
\begin{aligned}
L_{4}(x) & =\frac{(x-0)(x-\pi)\left(x-\frac{3 \pi}{2}\right)(x-2 \pi)}{\left(\frac{\pi}{2}-0\right)\left(\frac{\pi}{2}-\pi\right)\left(\frac{\pi}{2}-\frac{3 \pi}{2}\right)\left(\frac{\pi}{2}-2 \pi\right)}-\frac{(x-0)\left(x-\frac{\pi}{2}\right)(x-\pi)(x-2 \pi)}{\left(\frac{3 \pi}{2}-0\right)\left(\frac{3 \pi}{2}-\frac{\pi}{2}\right)\left(\frac{3 \pi}{2}-\pi\right)\left(\frac{3 \pi}{2}-2 \pi\right)} \\
& \approx+0.086004 x^{3}-0.810570 x^{2}+1.697653 x
\end{aligned}
$$

(b) We can then approximate $L_{4}\left(\frac{\pi}{6}\right) \approx 0.679008$.
(c) We have $a_{0}=a_{2}=a_{4}=0, a_{1}=1$, and $a_{3}=-1$. We also have $h_{0}=h_{1}=h_{2}=h_{3}=1.570796$.

The matrix equation is:

$$
\left[\begin{array}{lllll}
3.141593 & 1.570796 & 0.000000 & 0.000000 & 0.000000 \\
1.570796 & 6.283185 & 1.570796 & 0.000000 & 0.000000 \\
0.000000 & 1.570796 & 6.283185 & 1.570796 & 0.000000 \\
0.000000 & 0.000000 & 1.570796 & 6.283185 & 1.570796 \\
0.000000 & 0.000000 & 0.000000 & 1.570796 & 3.141593
\end{array}\right]\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right]=\left[\begin{array}{l}
-0.049187 \\
-0.595630 \\
+0.000000 \\
+0.595630 \\
+0.049187
\end{array}\right]
$$

This has solution $\left(c_{0}, c_{1}, c_{2}, c_{3}, c_{4}\right)=(-0.049187,-0.595630,0.000000,0.595630,0.049187)$, and then we have

$$
\begin{aligned}
\left(b_{0}, b_{1}, b_{2}, b_{3}\right) & =(1.000000,-0.012877,-0.948491,-0.012877) \\
\left(d_{0}, d_{1}, d_{2}, d_{3}\right) & =(-0.115959,0.126397,0.126397,-0.115959)
\end{aligned}
$$

This gives:

$$
S(x)= \begin{cases}0+x-0.049187 x^{2}-0.115959 x^{3} & 0 \leq x \leq \frac{\pi}{2} \\ 1-0.012877\left(x-\frac{\pi}{2}\right)-0.595630\left(x-\frac{\pi}{2}\right)^{2}+0.126397\left(x-\frac{\pi}{2}\right)^{3} & \frac{\pi}{2} \leq x \leq \pi \\ 0-0.948491(x-\pi)+0.126397(x-\pi)^{3} & \pi \leq x \leq \frac{3 \pi}{2} \\ -1-0.012877\left(x-\frac{3 \pi}{2}\right)+0.595630\left(x-\frac{3 \pi}{2}\right)^{2}-0.115959\left(x-\frac{3 \pi}{2}\right)^{3} & \frac{3 \pi}{2} \leq x \leq 2 \pi\end{cases}
$$

This can be rewritten as:

$$
S(x)= \begin{cases}-0.115959 x^{3}-0.049187 x^{2}+x & 0 \leq x \leq \frac{\pi}{2} \\ 0.126397 x^{3}-1.191262 x^{2}+2.793966 x-0.939319 & \frac{\pi}{2} \leq x \leq \pi \\ 0.126397 x^{3}-1.191264 x^{2}+2.793974 x-0.939328 & \pi \leq x \leq \frac{3 \pi}{2} \\ -0.115959 x^{3}+2.234962 x^{2}-13.351726 x+24.422271 & \frac{3 \pi}{2} \leq x \leq 2 \pi\end{cases}
$$

(d) We have $S\left(\frac{\pi}{6}\right)=0.493464$.
(e) Because the value of $\sin \frac{\pi}{6}=0.5$, we can see that the cubic spline gives a considerably more accurate value than does the Lagrange polynomial. Even the free cubic spline does better: it gives a value of 0.481481 , which is still much closer to 0.5 than 0.679008 .

