MT414: Numerical Analysis

Homework 6
Due November 13, 2006

1. Suppose that we have the following values for a function $f(x)$ :

| $x$ | $f(x)$ |
| :---: | :---: |
| 2.1 | 1.5602 |
| 2.2 | 1.4905 |
| 2.3 | 1.4324 |
| 2.4 | 1.3833 |
| 2.5 | 1.3415 |
| 2.6 | 1.3055 |

Use formulas from the text and class to estimate as accurately as possible the values of $f^{\prime}(x)$ for $x=2.1,2.2, \ldots, 2.6$.
2. Suppose that for some fixed values of $x_{0}$ and $h$, we know $f\left(x_{0}-h\right), f\left(x_{0}\right), f\left(x_{0}+h\right)$, and $f\left(x_{0}+2 h\right)$. Derive a 4 -point formula to estimate $f^{\prime}\left(x_{0}\right)$ to $O\left(h^{3}\right)$.
3. Suppose that $N(h)$ is an approximation to a quantity $M$ for every $h>0$, and that

$$
M=N(h)+K_{1} h^{2}+K_{2} h^{4}+K_{3} h^{6}+\cdots,
$$

for some constants $K_{1}, K_{2}, K_{3}, \ldots$ Use the values $N(h), N(h / 3)$, and $N(h / 9)$ to produce an $O\left(h^{6}\right)$ approximation for $M$.
4. (a) Show that

$$
\lim _{h \rightarrow 0}\left(\frac{2+h}{2-h}\right)^{1 / h}=e
$$

(b) Compute approximations to $e$ using the formula

$$
N(h)=\left(\frac{2+h}{2-h}\right)^{1 / h}
$$

for $h=0.4,0.2$, and 0.1 .
(c) Assuming that $e=N(h)+K_{1} h+K_{2} h^{2}+K_{3} h^{3}+\cdots$. Use extrapolation to compute an $O\left(h^{3}\right)$ approximation to $e$ with $h=0.4$.
(d) Show that $N(-h)=N(h)$.
(e) Use part (d) to show that $K_{1}=K_{3}=K_{5}=\cdots=0$ in the formula

$$
e=N(h)+K_{1} h+K_{2} h^{2}+K_{3} h^{3}+K_{4} h^{4}+K_{5} h^{5}+\cdots,
$$

so that the formula reduces to

$$
e=N(h)+K_{2} h^{2}+K_{4} h^{4}+K_{6} h^{6}+\cdots .
$$

$(f)$ Use the result of part $(e)$ and an extrapolation to compute an $O\left(h^{6}\right)$ approximation to $e$ with $h=0.4$.
5. Show that

$$
\int_{a}^{b} f(x) d x=2 h f\left(x_{0}\right)+\frac{h^{3}}{3} f^{\prime \prime}(\xi)
$$

where $b-a=2 h, x_{0}=a+h$, and $\xi \in(a, b)$.

