MT414: Numerical Analysis
 Homework 6
 Answers

1. Suppose that we have the following values for a function $f(x)$:

x	$f(x)$
2.1	1.5602
2.2	1.4905
2.3	1.4324
2.4	1.3833
2.5	1.3415
2.6	1.3055

Use formulas from the text and class to estimate as accurately as possible the values of $f^{\prime}(x)$ for $x=$ 2.1, 2.2, ... 2.6.

Answer: The relevant formulæ are

$$
\begin{align*}
& f^{\prime}\left(x_{0}\right) \approx \frac{1}{12 h}\left[f\left(x_{0}-2 h\right)-8 f\left(x_{0}-h\right)+8 f\left(x_{0}+h\right)-f\left(x_{0}+2 h\right)\right] \tag{4.6}\\
& f^{\prime}\left(x_{0}\right) \approx \frac{1}{12 h}\left[-25 f\left(x_{0}\right)+48 f\left(x_{0}+h\right)-36 f\left(x_{0}+2 h\right)+16 f\left(x_{0}+3 h\right)-3 f\left(x_{0}+4 h\right)\right] \tag{4.7}
\end{align*}
$$

If we apply (4.7) with $x_{0}=2.1$ and $h=0.1$, we get -0.7659 , while using $x_{0}=2.2$ and $h=0.1$ gives -0.6322 . We can use (4.6), with $x_{0}=2.3$ and $h=0.1$ to get -0.5324 , and using (4.6) with $x_{0}=2.4$ and $h=0.1$ gives -0.4518 . Finally, using (4.5) with $x_{0}=2.5$ and $h=-0.1$ gives -0.3849 , while setting $x_{0}=2.6$ and $h=-0.1$ gives -0.3355 .
2. Suppose that for some fixed values of x_{0} and h, we know $f\left(x_{0}-h\right), f\left(x_{0}\right), f\left(x_{0}+h\right)$, and $f\left(x_{0}+2 h\right)$. Derive a 4-point formula to estimate $f^{\prime}\left(x_{0}\right)$ to $O\left(h^{3}\right)$.
Answer: We have

$$
\begin{aligned}
f\left(x_{0}-h\right) & =f\left(x_{0}\right)-h f^{\prime}\left(x_{0}\right)+\frac{h^{2}}{2} f^{\prime \prime}\left(x_{0}\right)-\frac{h^{3}}{6} f^{(3)}\left(x_{0}\right)+\frac{h^{4}}{24} f^{(4)}\left(\xi_{1}\right) \\
f\left(x_{0}+h\right) & =f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right)+\frac{h^{2}}{2} f^{\prime \prime}\left(x_{0}\right)+\frac{h^{3}}{6} f^{(3)}\left(x_{0}\right)+\frac{h^{4}}{24} f^{(4)}\left(\xi_{2}\right) \\
f\left(x_{0}+2 h\right) & =f\left(x_{0}\right)+2 h f^{\prime}\left(x_{0}\right)+2 h^{2} f^{\prime \prime}\left(x_{0}\right)+\frac{4 h^{3}}{3} f^{(3)}\left(x_{0}\right)+\frac{16 h^{4}}{24} f^{(4)}\left(\xi_{3}\right)
\end{aligned}
$$

Multiply the first equation by A, the second by B, the third by C, and add. We would like to eliminate the terms involving $f^{\prime \prime}\left(x_{0}\right)$ and $f^{(3)}\left(x_{0}\right)$. The result is two equations:

$$
\begin{aligned}
\frac{A}{2}+\frac{B}{2}+2 C & =0 \\
-\frac{A}{6}+\frac{B}{6}+\frac{4 C}{3} & =0
\end{aligned}
$$

Multiply the second by 3 , yielding $-\frac{A}{2}+\frac{B}{2}+4 C=0$, and add to the first one to get $B+6 C=0$. So take $C=1$, and then $B=-6$ and $A=2$. Thus, we have

$$
2 f\left(x_{0}-h\right)-6 f\left(x_{0}+h\right)+f\left(x_{0}+2 h\right)=-3 f\left(x_{0}\right)-6 h f^{\prime}\left(x_{0}\right)+\frac{h^{4}}{24}\left(2 f^{(4)}\left(\xi_{1}\right)-6 f^{(4)}\left(\xi_{2}\right)+16 f^{(4)}\left(\xi_{3}\right)\right)
$$

Solving for $f^{\prime}\left(x_{0}\right)$, we have

$$
f^{\prime}\left(x_{0}\right)=\frac{-2 f\left(x_{0}-h\right)-3 f\left(x_{0}\right)+6 f\left(x_{0}+h\right)-f\left(x_{0}+2 h\right)}{6 h}+\frac{h^{3}}{144}\left(2 f^{(4)}\left(\xi_{1}\right)-6 f^{(4)}\left(\xi_{2}\right)+16 f^{(4)}\left(\xi_{3}\right)\right)
$$

More complicated methods allow one to show that

$$
\begin{aligned}
\frac{h^{3}}{144}\left(2 f^{(4)}\left(\xi_{1}\right)-6 f^{(4)}\left(\xi_{2}\right)+16 f^{(4)}\left(\xi_{3}\right)\right) & =\frac{h^{3}}{72}\left(f^{(4)}\left(\xi_{1}\right)-3 f^{(4)}\left(\xi_{2}\right)+8 f^{(4)}\left(\xi_{3}\right)\right) \\
& =\frac{h^{3}}{12}\left(\frac{f^{(4)}\left(\xi_{1}\right)-3 f^{(4)}\left(\xi_{2}\right)+8 f^{(4)}\left(\xi_{3}\right)}{6}\right)=\frac{h^{3}}{12} f^{(4)}(\xi)
\end{aligned}
$$

so the eventual answer is:

$$
f^{\prime}\left(x_{0}\right)=\frac{1}{6 h}\left(-2 f\left(x_{0}-h\right)-3 f\left(x_{0}\right)+6 f\left(x_{0}+h\right)-f\left(x_{0}+2 h\right)\right)+\frac{h^{3}}{12} f^{(4)}(\xi)
$$

3. Suppose that $N(h)$ is an approximation to a quantity M for every $h>0$, and that

$$
M=N(h)+K_{1} h^{2}+K_{2} h^{4}+K_{3} h^{6}+\cdots,
$$

for some constants $K_{1}, K_{2}, K_{3}, \ldots$ Use the values $N(h), N(h / 3)$, and $N(h / 9)$ to produce an $O\left(h^{6}\right)$ approximation for M.
Answer: We have

$$
\begin{aligned}
M & =N(h)+K_{1} h^{2}+K_{2} h^{4}+K_{3} h^{6}+\cdots \\
M & =N(h / 3)+K_{1} \frac{h^{2}}{9}+K_{2} \frac{h^{4}}{81}+K_{3} \frac{h^{6}}{729}+\cdots \\
M & =N(h / 9)+K_{1} \frac{h^{2}}{81}+K_{2} \frac{h^{4}}{6561}+K_{3} \frac{h^{6}}{531441}+\cdots
\end{aligned}
$$

Multiply the first equation by A, the second by B, and the third by C. Adding and canceling the K_{1} and K_{2} terms yields the equations

$$
\begin{aligned}
A+\frac{B}{9}+\frac{C}{81} & =0 \\
A+\frac{B}{81}+\frac{C}{6561} & =0
\end{aligned}
$$

Subtracting gives $\frac{8 B}{81}+\frac{80 C}{6561}=0$. Multiply by by 6561 , and we have $648 B+80 C=0$, or $81 B+10 C=0$. Set $C=-81, B=10$, and $A=-\frac{1}{9}$. Therefore,

$$
\left(-\frac{1}{9}+10-81\right) M=-\frac{N(h)}{9}+10 N(h / 3)-81 N(h / 9)+O\left(h^{6}\right)
$$

or

$$
M=\frac{1}{640}(729 N(h / 9)-90 N(h / 3)+N(h))+O\left(h^{6}\right)
$$

4. (a) Show that

$$
\lim _{h \rightarrow 0}\left(\frac{2+h}{2-h}\right)^{1 / h}=e
$$

(b) Compute approximations to e using the formula

$$
N(h)=\left(\frac{2+h}{2-h}\right)^{1 / h}
$$

for $h=0.4,0.2$, and 0.1 .
(c) Assuming that $e=N(h)+K_{1} h+K_{2} h^{2}+K_{3} h^{3}+\cdots$. Use extrapolation to compute an $O\left(h^{3}\right)$ approximation to e with $h=0.4$.
(d) Show that $N(-h)=N(h)$.
(e) Use part (d) to show that $K_{1}=K_{3}=K_{5}=\cdots=0$ in the formula

$$
e=N(h)+K_{1} h+K_{2} h^{2}+K_{3} h^{3}+K_{4} h^{4}+K_{5} h^{5}+\cdots,
$$

so that the formula reduces to

$$
e=N(h)+K_{2} h^{2}+K_{4} h^{4}+K_{6} h^{6}+\cdots
$$

(f) Use the result of part (e) and an extrapolation to compute an $O\left(h^{6}\right)$ approximation to e with $h=0.4$. Answer: (a) Let $C=\left(\frac{2+h}{2-h}\right)^{1 / h}$. Rather than evaluate $\lim _{h \rightarrow 0} C$, we evaluate $\lim _{h \rightarrow 0} \log C$. Note that $\log C=$ $\left(\frac{1}{h}\right)(\log (2+h)-\log (2-h))$, so we have

$$
\lim _{h \rightarrow 0} \log C=\lim _{h \rightarrow 0} \frac{\log (2+h)-\log (2-h)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{2+h}+\frac{1}{2-h}}{1}=\lim _{h \rightarrow 0} \frac{4}{(2+h)(2-h)}=1
$$

Therefore, $\log \lim _{h \rightarrow 0} C=\lim _{h \rightarrow 0} \log C=1$, so $\lim _{h \rightarrow 0} C=e$.
(b) Substitution of $h=0.4,0.2$, and 0.1 yields $2.7557,2.7274$, and 2.7206 respectively.
(c) We could apply the formulas in the book, but it's fun to do this directly:

$$
\begin{aligned}
& e=N(0.4)+0.4 K_{1}+0.16 K_{2}+K_{3} 0.4^{3}+\cdots \\
& e=N(0.2)+0.2 K_{1}+0.04 K_{2}+K_{3} 0.2^{3}+\cdots \\
& e=N(0.1)+0.1 K_{1}+0.01 K_{2}+K_{3} 0.1^{3}+\cdots
\end{aligned}
$$

Multiply the first equation by A, the second by B, and the third by C. Add, and set the terms involving K_{1} and K_{2} to 0 , yielding the 2 equations:

$$
\begin{aligned}
& 0.40 A+0.20 B+0.10 C=0 \\
& 0.16 A+0.04 B+0.01 C=0
\end{aligned}
$$

Multiply the first equation by 10 and the second by 100 to eliminate fractions, and then we have

$$
\begin{array}{r}
4 A+2 B+C=0 \\
16 A+4 B+C=0
\end{array}
$$

Subtracting gives $12 A+2 B=0$, so set $B=-6$, and $A=1$, and then $C=8$. Adding up the equations now gives

$$
3 e=N(0.4)-6 N(0.2)+8 N(0.1)+O\left(h^{3}\right),
$$

or $e \approx(8 N(0.1)-6 N(0.2)+N(0.4)) / 3$. This gives $e \approx 2.7185$.
(d) We have

$$
N(-h)=\left(\frac{2-h}{2+h}\right)^{\frac{-1}{h}}=\left(\left(\frac{2-h}{2+h}\right)^{-1}\right)^{\frac{1}{h}}=\left(\frac{2+h}{2-h}\right)^{\frac{1}{h}}=N(h)
$$

(e) We have

$$
\begin{aligned}
& e=N(+h)+K_{1} h+K_{2} h^{2}+K_{3} h^{3}+K_{4} h^{4}+K_{5} h^{5}+\cdots \\
& e=N(-h)-K_{1} h+K_{2} h^{2}-K_{3} h^{3}+K_{4} h^{4}-K_{5} h^{5}+\cdots
\end{aligned}
$$

so adding, using the fact that $N(h)=N(-h)$, and dividing by 2 yields

$$
e=N(h)+K_{2} h^{2}+K_{4} h^{4}+K_{6} h^{6}+\cdots
$$

(f) So now we have

$$
\begin{aligned}
& e=N(0.4)+0.16 K_{2}+0.0256 K_{4}+\cdots \\
& e=N(0.2)+0.04 K_{2}+0.0016 K_{4}+\cdots \\
& e=N(0.1)+0.01 K_{2}+0.0001 K_{4}+\cdots
\end{aligned}
$$

Our usual procedure, followed by multiplication to eliminate decimals, gives the equations

$$
\begin{aligned}
16 A+4 B+C & =0 \\
256 A+16 B+C & =0
\end{aligned}
$$

and subtraction gives $240 A+12 B=0$. Set $B=-20, A=1$, and $C=64$, and we have

$$
45 e=N(0.4)-20 N(0.2)+64 N(0.1)+O\left(h^{6}\right)
$$

or $e \approx \frac{1}{45}(64 N(0.1)-20 N(0.2)+N(0.4))=2.7183$. Note that this answer is correct to the accuracy to which we have worked. In fact, to 7 places we have 2.7182824 , so this method yields a quite accurate estimate.
5. Show that

$$
\int_{a}^{b} f(x) d x=2 h f\left(x_{0}\right)+\frac{h^{3}}{3} f^{\prime \prime}(\xi)
$$

where $b-a=2 h, x_{0}=a+h$, and $\xi \in(a, b)$.
Answer: To avoid typing subscripts repeatedly, I will let $y=a+h$, and then we are estimating $\int_{y-h}^{y+h} f(x) d x$. Fix y, and set

$$
E(h)=\int_{y-h}^{y+h} f(x) d x-2 h f(y)=\int_{y}^{y+h} f(x) d x-\int_{y}^{y-h} f(x) d x-2 h f(y) .
$$

Differentiate, and we have

$$
E^{\prime}(h)=f(y+h)+f(y-h)-2 f(y)
$$

by using the Fundamental Theorem of Calculus (and the chain rule). Differentiate again, and we have

$$
E^{\prime \prime}(h)=f^{\prime}(y+h)-f^{\prime}(y-h)=2 h\left(\frac{f^{\prime}(y+h)-f^{\prime}(y-h)}{2 h}\right)=2 h f^{\prime \prime}\left(\xi_{1}\right)
$$

Integration and an application of the Mean Value Theorem for Integrals gives

$$
E^{\prime}(h)=h^{2} f^{\prime \prime}\left(\xi_{2}\right)
$$

Integrate again, again applying the Mean Value Theorem for Integrals, and we have

$$
E(h)=\frac{h^{3} f^{\prime \prime}(\xi)}{3}
$$

