
Mathematics 805
Final Examination

Answers

1. (5 points) State the Weierstrass M -test.

Answer: Suppose that A ⊂ R, and fn : A→ R. Suppose further that |fn(x)| ≤Mn for all x ∈ A, and that∑
Mn converges. Then

∑
fn(x) converges uniformly on A.

2. (15 points) (a) State Lebesgue’s Dominated Convergence Theorem.
(b) State Lebesgue’s Monotone Convergence Theorem.
(c) Define

fn(x) =


1
n

x ∈ [0, n]

0 otherwise

Note that
∫
fn(x) dx = 1, but lim

n→∞
fn(x) = 0. Why does this contradict neither the Dominated nor the

Monotone Convergence Theorems?

Answer: (a) Suppose that fn ∈ L1 and lim fn = f almost everyone. Suppose further that |fn| ≤ g almost
everywhere, with g ∈ L1. Then f ∈ L1 and

∫
f = lim

∫
fn.

(b) Suppose that fn ∈ L1 is a monotone sequence, and suppose further that
∫
fn is bounded. Then fn

converges almost everywhere to a function f ∈ L1, and
∫
f = lim

∫
fn.

(c) This example does not violate the Dominated Convergence Theorem, because there is no function
g ∈ L1 with |fn| ≤ g. The example does not violate the Monotone Convergence Theorem because the
sequence fn is not monotone.

3. (10 points) Suppose that K is a compact metric space, and g : K → R a continuous function, with
g(x) > 0 for all x ∈ K. Suppose further that gn : K → R is a sequence of continuous functions converging
uniformly to g on K. Show that there is some integer N so that if n > N , then gn(x) > 0 for all x ∈ K.

Answer: Because K is compact, we know that g attains its minimum value at some x ∈ K. In particular,
we can find some ε so that g(x) ≥ ε for all x ∈ K.

Because gn → g uniformly, we can find an integer N so that if n ≥ N , then |g(x)− gn(x)| ≤ ε/2 for all
x ∈ K. This implies that gn(x) ≥ ε/2 for all x ∈ K, so gn(x) > 0.

4. (15 points) (a) Let (M1, d1) and (M2, d2) be metric spaces, and f : M1 → M2 a function. Define what
is meant by “f is uniformly continuous.”

(b) Suppose that (M1, d1) and (M2, d2) are metric spaces, and f : M1 → M2 is uniformly continuous.
Suppose that A,B ⊂M1 with d1(A,B) = 0. Show that d2(f(A), f(B)) = 0.

(c) Give an example to show that it is possible for f : M1 → M2 to be continuous, with d1(A,B) = 0
and d2(f(A), f(B)) 6= 0.

Answer: (a) Given any ε > 0, there is a δ > 0 so that if d1(x, y) < δ, then d2(f(x), f(y)) < ε.
(b) Given any ε > 0, we can find δ > 0 so that if d1(x, y) < δ, then d2(f(x), f(y)) < ε. Because

d1(A,B) = 0, we can find a ∈ A and b ∈ B so that d1(a, b) < δ. This says that d2(f(a), f(b)) < ε, and so
d2(f(A), f(B)) < ε. Because ε is arbitrary, we can conclude that d2(f(A), f(B)) = 0.

(c) Consider the function f : R ×R → R defined by f(x, y) = xy. Let A = {(n, 1
n ) : n ∈ Z, n > 0}.

Let B = {(n, 0) : n ∈ Z, n > 0}. Then d1(A,B) = 0. However, f(A) = {1}, while f(B) = {0}, so
d2(f(A), f(B)) = 1.

5. (12 points) Show that ∫ ∞
1

sin(x2) dx



can be defined as an improper Riemann integral but not as a Lebesgue integral. Hint: Let t = x2, and

imitate the proof that
∫ ∞

0

sinx
x

dx can be defined as an improper Riemann integral but not a Lebesgue

integral.
Answer: Let t = x2, so that x =

√
t, dt = 2x dx, and dx = dt/(2

√
t). If 1 ≤ x ≤ ∞, then 1 ≤ t ≤ ∞.

Therefore, as a Riemann integral, we have∫ ∞
1

sin(x2) dx = lim
b→∞

∫ b

1

sin(x2) dx = lim
b→∞

∫ b

1

sin t
2
√
t
dt

Set u = t−1/2, dv = sin t dt, du = − 1
2 t
−3/2 dt, and v = − cos t. We have

lim
b→∞

∫ b

1

sin t√
t
dt = lim

b→∞
−cos t√

t

]b
1

− 1
2

∫ b

1

cos t
t3/2

dt.

The first limit is cos 1, and the integral converges, because
∫ ∞

1

t−3/2 dt converges. Therefore, the improper

Riemann integral is defined.

On the other hand, if the integral converged as a Lebesgue integral, so would
∫ ∞

1

| sin(x2)| dx. The

same substitutions lead us to consider lim
b→∞

∫ b

1

| sin t|√
t
dt. But

∫ (n+1)π

nπ

| sin t|√
t
dt ≥ 1√

(n+ 1)π

∫ (n+1)π

nπ

| sin t| dt =
1√

(n+ 1)π
.

Because
∑ 1√

(n+ 1)π
diverges, we know that the Lebesgue integral must not exist.

6. (5 points) As usual, we define
tetx

et − 1
=
∞∑
n=0

Bn(x)
n!

tn

and Bn = Bn(0). (Recall that B0(x) = 1, B1(x) = x − 1
2 , and B2(x) = x2 − x + 1

6 .) Show that Bn( 1
2 ) =

(21−n − 1)Bn.
Answer: We have

∞∑
n=0

Bn( 1
2 )

n!
tn =

te
t
2

et − 1
∞∑
n=0

Bn
n!
tn =

t

et − 1
∞∑
n=0

Bn( 1
2 ) +Bn

n!
tn =

te
t
2

et − 1
+

t

et − 1
=
t(e

t
2 + 1)
et − 1

=
t(e

t
2 + 1)

(e
t
2 − 1)(e

t
2 + 1)

=
t

e
t
2 − 1

= 2
t/2

e
t
2 − 1

= 2
∞∑
n=0

Bn
n!

(
t

2

)n
=
∞∑
n=0

21−nBn
n!

tn

Equating coefficients, we see that Bn( 1
2 ) +Bn = 21−nBn.

7. (10 points) Suppose that f ∈ C∞. Let m ≥ 1 be an integer. Prove using induction on m that

f(0) =
∫ 1

0

f(x) dx+
m∑
k=1

Bk
k!

(
f (k−1)(1)− f (k−1)(0)

)
− (−1)m

∫ 1

0

Bm(x)
m!

f (m)(x) dx



Answer: We first have the case m = 1. We must show that

f(0) =
∫ 1

0

f(x) dx+
B1

1!
(f(1)− f(0))− (−1)

∫ 1

0

x− 1
2

1
f ′(x) dx

=
∫ 1

0

f(x) dx− 1
2

(f(1)− f(0)) +
∫ 1

0

(
x− 1

2

)
f ′(x) dx

To check this, we integrate by parts, setting u = x− 1
2 , du = dx, dv = f ′(x) dx, and v = f(x). We have∫ 1

0

f(x) dx− 1
2

(f(1)− f(0)) +
∫ 1

0

(
x− 1

2

)
f ′(x) dx

=
∫ 1

0

f(x) dx− 1
2

(f(1)− f(0)) +
(
x− 1

2

)
f(x)

]1
0

−
∫ 1

0

f(x) dx

= −1
2

(f(1)− f(0)) +
1
2
f(1) +

1
2
f(0) = f(0).

Now, for the inductive step, we must prove that
m∑
k=1

Bk
k!

(
f (k−1)(1)− f (k−1)(0)

)
− (−1)m

∫ 1

0

Bm(x)
m!

f (m)(x) dx

=
m+1∑
k=1

Bk
k!

(
f (k−1)(1)− f (k−1)(0)

)
− (−1)m+1

∫ 1

0

Bm+1(x)
(m+ 1)!

f (m+1)(x) dx

or

−(−1)m
∫ 1

0

Bm(x)
m!

f (m)(x) dx =
Bm+1

(m+ 1)!

(
f (m)(1)− f (m)(0)

)
− (−1)m+1

∫ 1

0

Bm+1(x)
(m+ 1)!

f (m+1)(x) dx

Multiply through by (−1)m+1, and this is the same as∫ 1

0

Bm(x)
m!

f (m)(x) dx = (−1)m+1 Bm+1

(m+ 1)!

(
f (m)(1)− f (m)(0)

)
−
∫ 1

0

Bm+1(x)
(m+ 1)!

f (m+1)(x) dx

We can prove this by using integration by part on the left-hand side. Let u = f (m)(x), du = f (m+1)(x) dx,
dv = Bm(x)

m! dx, and v = Bm+1(x)
(m+1)! . We have∫ 1

0

Bm(x)
m!

f (m)(x) dx =
Bm+1(x)
(m+ 1)!

f (m)(x)
]1
0

−
∫ 1

0

Bm+1(x)
(m+ 1)!

f (m+1)(x) dx

=
1

(m+ 1)!

(
Bm+1(1)f (m)(1)−Bm+1(0)f (m)(0)

)
−
∫ 1

0

Bm+1(x)
(m+ 1)!

f (m+1)(x) dx

=
Bm+1

(m+ 1)!

(
f (m)(1)− f (m)(0)

)
−
∫ 1

0

Bm+1(x)
(m+ 1)!

f (m+1)(x) dx

So it remains to show that (−1)m+1Bm+1 = Bm+1. If m+ 1 is odd, this is true because Bm+1 = 0. If m+ 1
is even, this is a trivially true inequality.

8. (28 points) Here is yet another way to compute
∫ ∞

0

sinx
x

dx. Recall the following facts, some of which

might be needed to do this problem:

Dn(x) :=
n∑

k=−n

eikx

Dn(x) =
sin(n+ 1

2 )x
sin(x2 )

Kn(x) :=
1

n+ 1

n∑
k=0

Dk(x)



Kn(x) =
(

1
n+ 1

)(
1− cos(n+ 1)x

1− cosx

)
=
(

1
n+ 1

)(
sin(n+ 1)x/2

sin(x/2)

)2

1
π

∫ π

0

Dn(x) dx =
1
π

∫ π

0

Kn(x) dx = 1

1− cosx = 2 sin2(x/2)

(a) Suppose that g is Riemann-integrable on [a, b] with |g| ≤M . Show that∣∣∣∣∣
∫ b

a

g(x)
(

1− cos kx
k

)
dx

∣∣∣∣∣ ≤ 2(b− a)M
k

and conclude that

lim
k→∞

∫ b

a

g(x)
(

1− cos kx
k

)
dx = 0.

(b) Show that ∫ π

0

(
1
k

)(
1− cos kx

4 sin2 x
2

)
dx =

π

2

(c) Let

f(x) =
1
x2
− 1

4 sin2 x
2

, 0 < x ≤ π

Show that it is possible to define f(0) so that f(x) is continuous and bounded on [0, π].
(d) Show that

lim
k→∞

∫ π

0

f(x)
(

1− cos kx
k

)
dx = 0.

(e) Show that

lim
k→∞

∫ π

0

1
x2

(
1− cos kx

k

)
dx =

π

2

and then

lim
k→∞

∫ π

0

sin2(kx/2)
kx2

dx =
π

4
.

(f ) Let y = kx
2 and conclude that

π

2
= lim
k→∞

∫ kπ/2

0

sin2 x

x2
dx =

∫ ∞
0

sin2 x

x2
dx.

(g) Finally, integrate by parts to show that∫ ∞
0

sin2 x

x2
dx =

∫ ∞
0

sinx
x

dx.

Answer: This problem is taken from “An elementary method for evaluating in infinite integral,” by M.R.
Spiegel, The American Mathematical Monthly, 58:8, Oct. 1951, pp. 555–558.

(a) This is trivial:∣∣∣∣∣
∫ b

a

g(x)
(

1− cos kx
k

)
dx

∣∣∣∣∣ ≤
∫ b

a

∣∣∣∣g(x)
(

1− cos kx
k

)∣∣∣∣ dx ≤ ∫ b

a

M

k
2 dx ≤ 2M(b− a)

k
.



The limit follows immediately.
(b) We have

1
π

∫ π

0

Kk−1(x) dx = 1∫ π

0

Kk−1(x) dx = π∫ π

0

(
1
k

)(
1− cos kx
1− cosx

)
dx = π∫ π

0

(
1
k

)(
1− cos kx
2 sin2(x/2)

)
dx = π∫ π

0

(
1
k

)(
1− cos kx
4 sin2(x/2)

)
dx =

π

2

(c) Recall that sin y = y− y3

6 +· · ·. This means that sin(x/2) = x
2−

x3

48 +· · · and sin2(x/2) = x2

4 −
x4

48 +· · ·.
Therefore,

f(x) =
1
x2
− 1

4 sin2 x
2

=
4 sin2 x

2 − x
2

4x2 sin2 x
2

=
(x2 − x4

12 + · · ·)− x2

x4 − · · ·
=
−x4/12 + · · ·
x4 + · · ·

=
−1/12 + · · ·

1 + · · ·

Therefore, the function is actually analytic at x = 0, if we define f(0) to be − 1
12 .

(d) Because f(x) satisfies the hypotheses of part (a), this follows immediately from (a).
(e) We have

lim
k→∞

∫ π

0

(
1
x2
− 1

4 sin2 x
2

)(
1− cos kx

k

)
dx = 0

lim
k→∞

∫ π

0

(
1
x2

)(
1− cos kx

k

)
dx−

∫ π

0

(
1

4 sin2 x
2

)(
1− cos kx

k

)
dx = 0

lim
k→∞

∫ π

0

(
1
x2

)(
1− cos kx

k

)
dx− π

2
= 0

lim
k→∞

∫ π

0

(
1
x2

)(
1− cos kx

k

)
dx =

π

2

lim
k→∞

∫ π

0

2 sin2 kx
2

kx2
dx =

π

2

lim
k→∞

∫ π

0

sin2 kx
2

kx2
dx =

π

4

(f ) Let y = kx
2 , so x = 2y

k , and then dx = 2
k dy. Note that if 0 ≤ x ≤ π, then 0 ≤ y ≤ kπ

2 . We have

π

4
= lim
k→∞

∫ π

0

sin2 kx
2

kx2
dx = lim

k→∞

∫ kπ
2

0

sin2 kx
2

kx2

(
2
k

)
dy = 2 lim

k→∞

∫ kπ
2

0

sin2 kx
2

k2x2
dy

=
1
2

lim
k→∞

∫ kπ
2

0

sin2 kx
2

(k2x2/22)
dy =

1
2

lim
k→∞

∫ kπ
2

0

sin2 y

y2
dy =

1
2

∫ ∞
0

sin2 y

y2
dy

π

2
=
∫ ∞

0

sin2 y

y2
dy

(g) Integration by parts is not quite trivial. We set u = sin2 x, dv = x−2 dx, du = 2 sinx cosx dx =
sin(2x) dx, and v = −x−1. We have∫ ∞

0

sin2 x

x2
dx = − sin2 x

x

]∞
0

+
∫ ∞

0

sin(2x)
x

dx



Now, we can compute that lim
x→0

sin2 x

x
= 0, and lim

x→∞

sin2 x

x
= 0 as well. For the rest, we substitute y = 2x,

and then dy = 2 dx, so dx = 1
2 dy:∫ ∞

0

sin(2x)
x

dx =
∫ ∞

0

sin(2x)
2x

dy =
∫ ∞

0

sin y
y

dy


