Mathematics 805
Final Examination
Answers

1. (5 points) State the Weierstrass M-test.

Answer: Suppose that $A \subset \mathbf{R}$, and $f_{n}: A \rightarrow \mathbf{R}$. Suppose further that $\left|f_{n}(x)\right| \leq M_{n}$ for all $x \in A$, and that $\sum M_{n}$ converges. Then $\sum f_{n}(x)$ converges uniformly on A.
2. (15 points) (a) State Lebesgue's Dominated Convergence Theorem.
(b) State Lebesgue's Monotone Convergence Theorem.
(c) Define

$$
f_{n}(x)= \begin{cases}\frac{1}{n} & x \in[0, n] \\ 0 & \text { otherwise }\end{cases}
$$

Note that $\int f_{n}(x) d x=1$, but $\lim _{n \rightarrow \infty} f_{n}(x)=0$. Why does this contradict neither the Dominated nor the Monotone Convergence Theorems?
Answer: (a) Suppose that $f_{n} \in L^{1}$ and $\lim f_{n}=f$ almost everyone. Suppose further that $\left|f_{n}\right| \leq g$ almost everywhere, with $g \in L^{1}$. Then $f \in L^{1}$ and $\int f=\lim \int f_{n}$.
(b) Suppose that $f_{n} \in L^{1}$ is a monotone sequence, and suppose further that $\int f_{n}$ is bounded. Then f_{n} converges almost everywhere to a function $f \in L^{1}$, and $\int f=\lim \int f_{n}$.
(c) This example does not violate the Dominated Convergence Theorem, because there is no function $g \in L^{1}$ with $\left|f_{n}\right| \leq g$. The example does not violate the Monotone Convergence Theorem because the sequence f_{n} is not monotone.
3. (10 points) Suppose that K is a compact metric space, and $g: K \rightarrow \mathbf{R}$ a continuous function, with $g(x)>0$ for all $x \in K$. Suppose further that $g_{n}: K \rightarrow \mathbf{R}$ is a sequence of continuous functions converging uniformly to g on K. Show that there is some integer N so that if $n>N$, then $g_{n}(x)>0$ for all $x \in K$.
Answer: Because K is compact, we know that g attains its minimum value at some $x \in K$. In particular, we can find some ϵ so that $g(x) \geq \epsilon$ for all $x \in K$.

Because $g_{n} \rightarrow g$ uniformly, we can find an integer N so that if $n \geq N$, then $\left|g(x)-g_{n}(x)\right| \leq \epsilon / 2$ for all $x \in K$. This implies that $g_{n}(x) \geq \epsilon / 2$ for all $x \in K$, so $g_{n}(x)>0$.
4. (15 points) (a) Let $\left(M_{1}, d_{1}\right)$ and $\left(M_{2}, d_{2}\right)$ be metric spaces, and $f: M_{1} \rightarrow M_{2}$ a function. Define what is meant by " f is uniformly continuous."
(b) Suppose that $\left(M_{1}, d_{1}\right)$ and $\left(M_{2}, d_{2}\right)$ are metric spaces, and $f: M_{1} \rightarrow M_{2}$ is uniformly continuous. Suppose that $A, B \subset M_{1}$ with $d_{1}(A, B)=0$. Show that $d_{2}(f(A), f(B))=0$.
(c) Give an example to show that it is possible for $f: M_{1} \rightarrow M_{2}$ to be continuous, with $d_{1}(A, B)=0$ and $d_{2}(f(A), f(B)) \neq 0$.
Answer: (a) Given any $\epsilon>0$, there is a $\delta>0$ so that if $d_{1}(x, y)<\delta$, then $d_{2}(f(x), f(y))<\epsilon$.
(b) Given any $\epsilon>0$, we can find $\delta>0$ so that if $d_{1}(x, y)<\delta$, then $d_{2}(f(x), f(y))<\epsilon$. Because $d_{1}(A, B)=0$, we can find $a \in A$ and $b \in B$ so that $d_{1}(a, b)<\delta$. This says that $d_{2}(f(a), f(b))<\epsilon$, and so $d_{2}(f(A), f(B))<\epsilon$. Because ϵ is arbitrary, we can conclude that $d_{2}(f(A), f(B))=0$.
(c) Consider the function $f: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x, y)=x y$. Let $A=\left\{\left(n, \frac{1}{n}\right): n \in \mathbf{Z}, n>0\right\}$. Let $B=\{(n, 0): n \in \mathbf{Z}, n>0\}$. Then $d_{1}(A, B)=0$. However, $f(A)=\{1\}$, while $f(B)=\{0\}$, so $d_{2}(f(A), f(B))=1$.
5. (12 points) Show that

$$
\int_{1}^{\infty} \sin \left(x^{2}\right) d x
$$

can be defined as an improper Riemann integral but not as a Lebesgue integral. Hint: Let $t=x^{2}$, and imitate the proof that $\int_{0}^{\infty} \frac{\sin x}{x} d x$ can be defined as an improper Riemann integral but not a Lebesgue integral.
Answer: Let $t=x^{2}$, so that $x=\sqrt{t}, d t=2 x d x$, and $d x=d t /(2 \sqrt{t})$. If $1 \leq x \leq \infty$, then $1 \leq t \leq \infty$. Therefore, as a Riemann integral, we have

$$
\int_{1}^{\infty} \sin \left(x^{2}\right) d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \sin \left(x^{2}\right) d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{\sin t}{2 \sqrt{t}} d t
$$

Set $u=t^{-1 / 2}, d v=\sin t d t, d u=-\frac{1}{2} t^{-3 / 2} d t$, and $v=-\cos t$. We have

$$
\left.\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{\sin t}{\sqrt{t}} d t=\lim _{b \rightarrow \infty}-\frac{\cos t}{\sqrt{t}}\right]_{1}^{b}-\frac{1}{2} \int_{1}^{b} \frac{\cos t}{t^{3 / 2}} d t
$$

The first limit is $\cos 1$, and the integral converges, because $\int_{1}^{\infty} t^{-3 / 2} d t$ converges. Therefore, the improper Riemann integral is defined.

On the other hand, if the integral converged as a Lebesgue integral, so would $\int_{1}^{\infty}\left|\sin \left(x^{2}\right)\right| d x$. The same substitutions lead us to consider $\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{|\sin t|}{\sqrt{t}} d t$. But

$$
\int_{n \pi}^{(n+1) \pi} \frac{|\sin t|}{\sqrt{t}} d t \geq \frac{1}{\sqrt{(n+1) \pi}} \int_{n \pi}^{(n+1) \pi}|\sin t| d t=\frac{1}{\sqrt{(n+1) \pi}}
$$

Because $\sum \frac{1}{\sqrt{(n+1) \pi}}$ diverges, we know that the Lebesgue integral must not exist.
6. (5 points) As usual, we define

$$
\frac{t e^{t x}}{e^{t}-1}=\sum_{n=0}^{\infty} \frac{B_{n}(x)}{n!} t^{n}
$$

and $B_{n}=B_{n}(0)$. (Recall that $B_{0}(x)=1, B_{1}(x)=x-\frac{1}{2}$, and $B_{2}(x)=x^{2}-x+\frac{1}{6}$.) Show that $B_{n}\left(\frac{1}{2}\right)=$ $\left(2^{1-n}-1\right) B_{n}$.
Answer: We have

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{B_{n}\left(\frac{1}{2}\right)}{n!} t^{n} & =\frac{t e^{\frac{t}{2}}}{e^{t}-1} \\
\sum_{n=0}^{\infty} \frac{B_{n}}{n!} t^{n} & =\frac{t}{e^{t}-1} \\
\sum_{n=0}^{\infty} \frac{B_{n}\left(\frac{1}{2}\right)+B_{n}}{n!} t^{n} & =\frac{t e^{\frac{t}{2}}}{e^{t}-1}+\frac{t}{e^{t}-1}=\frac{t\left(e^{\frac{t}{2}}+1\right)}{e^{t}-1}=\frac{t\left(e^{\frac{t}{2}}+1\right)}{\left(e^{\frac{t}{2}}-1\right)\left(e^{\frac{t}{2}}+1\right)} \\
& =\frac{t}{e^{\frac{t}{2}}-1}=2 \frac{t / 2}{e^{\frac{t}{2}}-1}=2 \sum_{n=0}^{\infty} \frac{B_{n}}{n!}\left(\frac{t}{2}\right)^{n}=\sum_{n=0}^{\infty} \frac{2^{1-n} B_{n}}{n!} t^{n}
\end{aligned}
$$

Equating coefficients, we see that $B_{n}\left(\frac{1}{2}\right)+B_{n}=2^{1-n} B_{n}$.
7. (10 points) Suppose that $f \in C^{\infty}$. Let $m \geq 1$ be an integer. Prove using induction on m that

$$
f(0)=\int_{0}^{1} f(x) d x+\sum_{k=1}^{m} \frac{B_{k}}{k!}\left(f^{(k-1)}(1)-f^{(k-1)}(0)\right)-(-1)^{m} \int_{0}^{1} \frac{B_{m}(x)}{m!} f^{(m)}(x) d x
$$

Answer: We first have the case $m=1$. We must show that

$$
\begin{aligned}
f(0) & =\int_{0}^{1} f(x) d x+\frac{B_{1}}{1!}(f(1)-f(0))-(-1) \int_{0}^{1} \frac{x-\frac{1}{2}}{1} f^{\prime}(x) d x \\
& =\int_{0}^{1} f(x) d x-\frac{1}{2}(f(1)-f(0))+\int_{0}^{1}\left(x-\frac{1}{2}\right) f^{\prime}(x) d x
\end{aligned}
$$

To check this, we integrate by parts, setting $u=x-\frac{1}{2}, d u=d x, d v=f^{\prime}(x) d x$, and $v=f(x)$. We have

$$
\begin{gathered}
\int_{0}^{1} f(x) d x-\frac{1}{2}(f(1)-f(0))+\int_{0}^{1}\left(x-\frac{1}{2}\right) f^{\prime}(x) d x \\
\left.=\int_{0}^{1} f(x) d x-\frac{1}{2}(f(1)-f(0))+\left(x-\frac{1}{2}\right) f(x)\right]_{0}^{1}-\int_{0}^{1} f(x) d x \\
=-\frac{1}{2}(f(1)-f(0))+\frac{1}{2} f(1)+\frac{1}{2} f(0)=f(0)
\end{gathered}
$$

Now, for the inductive step, we must prove that

$$
\begin{aligned}
& \sum_{k=1}^{m} \frac{B_{k}}{k!}\left(f^{(k-1)}(1)-f^{(k-1)}(0)\right)-(-1)^{m} \int_{0}^{1} \frac{B_{m}(x)}{m!} f^{(m)}(x) d x \\
= & \sum_{k=1}^{m+1} \frac{B_{k}}{k!}\left(f^{(k-1)}(1)-f^{(k-1)}(0)\right)-(-1)^{m+1} \int_{0}^{1} \frac{B_{m+1}(x)}{(m+1)!} f^{(m+1)}(x) d x
\end{aligned}
$$

or

$$
-(-1)^{m} \int_{0}^{1} \frac{B_{m}(x)}{m!} f^{(m)}(x) d x=\frac{B_{m+1}}{(m+1)!}\left(f^{(m)}(1)-f^{(m)}(0)\right)-(-1)^{m+1} \int_{0}^{1} \frac{B_{m+1}(x)}{(m+1)!} f^{(m+1)}(x) d x
$$

Multiply through by $(-1)^{m+1}$, and this is the same as

$$
\int_{0}^{1} \frac{B_{m}(x)}{m!} f^{(m)}(x) d x=(-1)^{m+1} \frac{B_{m+1}}{(m+1)!}\left(f^{(m)}(1)-f^{(m)}(0)\right)-\int_{0}^{1} \frac{B_{m+1}(x)}{(m+1)!} f^{(m+1)}(x) d x
$$

We can prove this by using integration by part on the left-hand side. Let $u=f^{(m)}(x), d u=f^{(m+1)}(x) d x$, $d v=\frac{B_{m}(x)}{m!} d x$, and $v=\frac{B_{m+1}(x)}{(m+1)!}$. We have

$$
\begin{aligned}
\int_{0}^{1} \frac{B_{m}(x)}{m!} f^{(m)}(x) d x & \left.=\frac{B_{m+1}(x)}{(m+1)!} f^{(m)}(x)\right]_{0}^{1}-\int_{0}^{1} \frac{B_{m+1}(x)}{(m+1)!} f^{(m+1)}(x) d x \\
& =\frac{1}{(m+1)!}\left(B_{m+1}(1) f^{(m)}(1)-B_{m+1}(0) f^{(m)}(0)\right)-\int_{0}^{1} \frac{B_{m+1}(x)}{(m+1)!} f^{(m+1)}(x) d x \\
& =\frac{B_{m+1}}{(m+1)!}\left(f^{(m)}(1)-f^{(m)}(0)\right)-\int_{0}^{1} \frac{B_{m+1}(x)}{(m+1)!} f^{(m+1)}(x) d x
\end{aligned}
$$

So it remains to show that $(-1)^{m+1} B_{m+1}=B_{m+1}$. If $m+1$ is odd, this is true because $B_{m+1}=0$. If $m+1$ is even, this is a trivially true inequality.
8. (28 points) Here is yet another way to compute $\int_{0}^{\infty} \frac{\sin x}{x} d x$. Recall the following facts, some of which might be needed to do this problem:

$$
\begin{aligned}
D_{n}(x) & :=\sum_{k=-n}^{n} e^{i k x} \\
D_{n}(x) & =\frac{\sin \left(n+\frac{1}{2}\right) x}{\sin \left(\frac{x}{2}\right)} \\
K_{n}(x) & :=\frac{1}{n+1} \sum_{k=0}^{n} D_{k}(x)
\end{aligned}
$$

$$
\begin{aligned}
K_{n}(x) & =\left(\frac{1}{n+1}\right)\left(\frac{1-\cos (n+1) x}{1-\cos x}\right) \\
& =\left(\frac{1}{n+1}\right)\left(\frac{\sin (n+1) x / 2}{\sin (x / 2)}\right)^{2} \\
\frac{1}{\pi} \int_{0}^{\pi} D_{n}(x) d x & =\frac{1}{\pi} \int_{0}^{\pi} K_{n}(x) d x=1 \\
1-\cos x & =2 \sin ^{2}(x / 2)
\end{aligned}
$$

(a) Suppose that g is Riemann-integrable on $[a, b]$ with $|g| \leq M$. Show that

$$
\left|\int_{a}^{b} g(x)\left(\frac{1-\cos k x}{k}\right) d x\right| \leq \frac{2(b-a) M}{k}
$$

and conclude that

$$
\lim _{k \rightarrow \infty} \int_{a}^{b} g(x)\left(\frac{1-\cos k x}{k}\right) d x=0
$$

(b) Show that

$$
\int_{0}^{\pi}\left(\frac{1}{k}\right)\left(\frac{1-\cos k x}{4 \sin ^{2} \frac{x}{2}}\right) d x=\frac{\pi}{2}
$$

(c) Let

$$
f(x)=\frac{1}{x^{2}}-\frac{1}{4 \sin ^{2} \frac{x}{2}}, \quad 0<x \leq \pi
$$

Show that it is possible to define $f(0)$ so that $f(x)$ is continuous and bounded on $[0, \pi]$.
(d) Show that

$$
\lim _{k \rightarrow \infty} \int_{0}^{\pi} f(x)\left(\frac{1-\cos k x}{k}\right) d x=0
$$

(e) Show that

$$
\lim _{k \rightarrow \infty} \int_{0}^{\pi} \frac{1}{x^{2}}\left(\frac{1-\cos k x}{k}\right) d x=\frac{\pi}{2}
$$

and then

$$
\lim _{k \rightarrow \infty} \int_{0}^{\pi} \frac{\sin ^{2}(k x / 2)}{k x^{2}} d x=\frac{\pi}{4}
$$

(f) Let $y=\frac{k x}{2}$ and conclude that

$$
\frac{\pi}{2}=\lim _{k \rightarrow \infty} \int_{0}^{k \pi / 2} \frac{\sin ^{2} x}{x^{2}} d x=\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x
$$

(g) Finally, integrate by parts to show that

$$
\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x=\int_{0}^{\infty} \frac{\sin x}{x} d x
$$

Answer: This problem is taken from "An elementary method for evaluating in infinite integral," by M.R. Spiegel, The American Mathematical Monthly, 58:8, Oct. 1951, pp. 555-558.
(a) This is trivial:

$$
\left|\int_{a}^{b} g(x)\left(\frac{1-\cos k x}{k}\right) d x\right| \leq \int_{a}^{b}\left|g(x)\left(\frac{1-\cos k x}{k}\right)\right| d x \leq \int_{a}^{b} \frac{M}{k} 2 d x \leq \frac{2 M(b-a)}{k}
$$

The limit follows immediately.
(b) We have

$$
\begin{aligned}
\frac{1}{\pi} \int_{0}^{\pi} K_{k-1}(x) d x & =1 \\
\int_{0}^{\pi} K_{k-1}(x) d x & =\pi \\
\int_{0}^{\pi}\left(\frac{1}{k}\right)\left(\frac{1-\cos k x}{1-\cos x}\right) d x & =\pi \\
\int_{0}^{\pi}\left(\frac{1}{k}\right)\left(\frac{1-\cos k x}{2 \sin ^{2}(x / 2)}\right) d x & =\pi \\
\int_{0}^{\pi}\left(\frac{1}{k}\right)\left(\frac{1-\cos k x}{4 \sin ^{2}(x / 2)}\right) d x & =\frac{\pi}{2}
\end{aligned}
$$

(c) Recall that $\sin y=y-\frac{y^{3}}{6}+\cdots$. This means that $\sin (x / 2)=\frac{x}{2}-\frac{x^{3}}{48}+\cdots$ and $\sin ^{2}(x / 2)=\frac{x^{2}}{4}-\frac{x^{4}}{48}+\cdots$. Therefore,

$$
f(x)=\frac{1}{x^{2}}-\frac{1}{4 \sin ^{2} \frac{x}{2}}=\frac{4 \sin ^{2} \frac{x}{2}-x^{2}}{4 x^{2} \sin ^{2} \frac{x}{2}}=\frac{\left(x^{2}-\frac{x^{4}}{12}+\cdots\right)-x^{2}}{x^{4}-\cdots}=\frac{-x^{4} / 12+\cdots}{x^{4}+\cdots}=\frac{-1 / 12+\cdots}{1+\cdots}
$$

Therefore, the function is actually analytic at $x=0$, if we define $f(0)$ to be $-\frac{1}{12}$.
(d) Because $f(x)$ satisfies the hypotheses of part (a), this follows immediately from (a).
(e) We have

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \int_{0}^{\pi}\left(\frac{1}{x^{2}}-\frac{1}{4 \sin ^{2} \frac{x}{2}}\right)\left(\frac{1-\cos k x}{k}\right) d x & =0 \\
\lim _{k \rightarrow \infty} \int_{0}^{\pi}\left(\frac{1}{x^{2}}\right)\left(\frac{1-\cos k x}{k}\right) d x-\int_{0}^{\pi}\left(\frac{1}{4 \sin ^{2} \frac{x}{2}}\right)\left(\frac{1-\cos k x}{k}\right) d x & =0 \\
\lim _{k \rightarrow \infty} \int_{0}^{\pi}\left(\frac{1}{x^{2}}\right)\left(\frac{1-\cos k x}{k}\right) d x-\frac{\pi}{2} & =0 \\
\lim _{k \rightarrow \infty} \int_{0}^{\pi}\left(\frac{1}{x^{2}}\right)\left(\frac{1-\cos k x}{k}\right) d x & =\frac{\pi}{2} \\
\lim _{k \rightarrow \infty} \int_{0}^{\pi} \frac{2 \sin ^{2} \frac{k x}{2}}{k x^{2}} d x & =\frac{\pi}{2} \\
\lim _{k \rightarrow \infty} \int_{0}^{\pi} \frac{\sin ^{2} \frac{k x}{2}}{k x^{2}} d x & =\frac{\pi}{4}
\end{aligned}
$$

(f) Let $y=\frac{k x}{2}$, so $x=\frac{2 y}{k}$, and then $d x=\frac{2}{k} d y$. Note that if $0 \leq x \leq \pi$, then $0 \leq y \leq \frac{k \pi}{2}$. We have

$$
\begin{aligned}
\frac{\pi}{4} & =\lim _{k \rightarrow \infty} \int_{0}^{\pi} \frac{\sin ^{2} \frac{k x}{2}}{k x^{2}} d x=\lim _{k \rightarrow \infty} \int_{0}^{\frac{k \pi}{2}} \frac{\sin ^{2} \frac{k x}{2}}{k x^{2}}\left(\frac{2}{k}\right) d y=2 \lim _{k \rightarrow \infty} \int_{0}^{\frac{k \pi}{2}} \frac{\sin ^{2} \frac{k x}{2}}{k^{2} x^{2}} d y \\
& =\frac{1}{2} \lim _{k \rightarrow \infty} \int_{0}^{\frac{k \pi}{2}} \frac{\sin ^{2} \frac{k x}{2}}{\left(k^{2} x^{2} / 2^{2}\right)} d y=\frac{1}{2} \lim _{k \rightarrow \infty} \int_{0}^{\frac{k \pi}{2}} \frac{\sin ^{2} y}{y^{2}} d y=\frac{1}{2} \int_{0}^{\infty} \frac{\sin ^{2} y}{y^{2}} d y \\
\frac{\pi}{2} & =\int_{0}^{\infty} \frac{\sin ^{2} y}{y^{2}} d y
\end{aligned}
$$

(g) Integration by parts is not quite trivial. We set $u=\sin ^{2} x, d v=x^{-2} d x, d u=2 \sin x \cos x d x=$ $\sin (2 x) d x$, and $v=-x^{-1}$. We have

$$
\left.\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x=-\frac{\sin ^{2} x}{x}\right]_{0}^{\infty}+\int_{0}^{\infty} \frac{\sin (2 x)}{x} d x
$$

Now, we can compute that $\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x}=0$, and $\lim _{x \rightarrow \infty} \frac{\sin ^{2} x}{x}=0$ as well. For the rest, we substitute $y=2 x$, and then $d y=2 d x$, so $d x=\frac{1}{2} d y$:

$$
\int_{0}^{\infty} \frac{\sin (2 x)}{x} d x=\int_{0}^{\infty} \frac{\sin (2 x)}{2 x} d y=\int_{0}^{\infty} \frac{\sin y}{y} d y
$$

