
MT903.01
Graduate Seminar: Concrete Mathematics

Final Examination
Answers

1. (10 points) Prove the Vandermonde identity∑
k

(
r

m+ k

)(
s

n− k

)
=

(
r+ s

m+ n

)
for integers m and n. You may not use any of the last five entries in the “Favorite Binomial Identities”
table to prove this formula, because all of them are proved using Vandermonde’s formula.

Answer: We prove this by induction on r. Note that both sides are polynomials in r of degree m + n, so
if the equality holds for all positive integer r, then it must be a polynomial identity and hence true for all
values of r.

We start with the case r = 0. In that case, the only non-zero term in the sum occurs when m + k = 0,
so k = −m, and then

(
s

n−k

)
=
(

s
n+m

)
, which of course is the right-hand side of the equation.

Assuming that the equation is true for r, we verify it for r+ 1. We have∑
k

(
r+ 1

m+ k

)(
s

n− k

)
=

∑
k

((
r

m+ k

)
+

(
r

m+ k− 1

))(
s

n− k

)
=

∑
k

(
r

m+ k

)(
s

n− k

)
+

∑
k

(
r

m− 1+ k

)(
s

n− k

)
=

(
r+ s

m+ n

)
+

(
r+ s

m− 1+ n

)
=

(
r+ s+ 1

m+ n

)
.

2. (5 points) What is ϕ(999)? Explain how you computed your answer.

Answer: We have ϕ(999) = ϕ(27)ϕ(37) = (27− 9)(37− 1) = (18)(36) = 628.

3. (5 points) List the Stern-Brocot tree up to the level that includes 1
3 .

Answer:
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4. (10 points) Prove (
n− 1

k− 1

)(
n

k+ 1

)(
n+ 1

k

)
=

(
n− 1

k

)(
n+ 1

k+ 1

)(
n

k− 1

)
,

where n and k are positive integers.



Answer: We have(
n− 1

k− 1

)(
n

k+ 1

)(
n+ 1

k

)
=

(
n− 1

k− 1

)[(
n

k+ 1

)(
n− 1

k

)][(
n+ 1

k

)(
n

k− 1

)]
=

(
n

k+ 1

)(
n+ 1

k

)(
n− 1

k− 1

)(
n− 1

k

)(
n

k− 1

)
=

(
n+ 1

k+ 1

)(
n− 1

k

)(
n

k− 1

)
5. (10 points) Find a closed form for

m∑
k=0

(
m
k

)(
n
k

)
for integers n > m > 0.
Answer: We start with a simplification:(

m
k

)(
n
k

) =

m!
k!(m−k)!

n!
k!(n−k)!

=

(
m!

n!

)(
(n− k)!

(m− k)!

)
=

(
m!(n−m)!

n!

)(
(n− k)!

(n−m)!(m− k)!

)
=

(
n

m

)−1(
n− k

n−m

)
Therefore,

m∑
k=0

(
m
k

)(
n
k

) =

(
n

m

)−1 m∑
k=0

(
n− k

n−m

)
=

(
n

m

)−1 n∑
k=0

(
n− k

n−m

)
In the last equality, we have used the fact that if k > m, then

(
n−k
n−m

)
= 0.

Next, let j = n− k, and note that if 0 6 k 6 n, then 0 6 j 6 n. We have(
n

m

)−1 n∑
k=0

(
n− k

n−m

)
=

(
n

m

)−1 n∑
j=0

(
j

n−m

)
=

(
n

m

)−1(
n+ 1

n−m+ 1

)

=

(
m!(n−m)!

n!

)(
(n+ 1)!

(n−m+ 1)!m!

)
=

n+ 1

n−m+ 1
.

6. (10 points) Let fn = 22n
+ 1. Prove that fm ⊥ fn if m < n.

Answer: Note that 22m ≡ −1 (mod 22m
+ 1). Raise both sides of this congruence to the power 22n−2m

(which is an even number), and we get 22n ≡ 1 (mod fm). Therefore, fn ≡ 2 (mod fm), meaning that
fn = qfm + 2 for some integer q. Therefore, if p is any prime which divides both fn and fm, p must divide
2, meaning that p would be 2. But obviously, fn and fm are both odd, and hence not multiples of 2, showing
that there is no prime dividing both fm and fn. This shows that fm ⊥ fn.

7. (10 points) Suppose that f(n) and g(m) are both multiplicative functions. Define

h(m) =
∑
d|m

f(d)g(
m

d
).

Show that h(m) is a multiplicative function.
Answer: Suppose that m = m1m2, with m1 ⊥ m2. We must show that h(m1m2) = h(m1)h(m2). The
critical point is that if d|m1m2, then d can be written uniquely in the form d = d1d2, with d1|m1, d2|m2,
and d1 ⊥ d2. Conversely, if d1|m1 and d2|m2, then d1 ⊥ d2 and if d = d1d2, then d|m.

We therefore have

h(m1m2) =
∑

d|m1m2

f(d)g(
m1m2

d
) =

∑
d1d2|m1m2

f(d1d2)g(
m1m2

d1d2
) =

∑
d1|m1,d2|m2

f(d1d2)g(
m1

d1
· m2

d2
)

=
∑

d1|m1,d2|m2

f(d1)f(d2)g(
m1

d1
)g(
m2

d2
) =

∑
d1|m1

f(d1)g(
m1

d1
)

∑
d2|m2

f(d2)g(
m2

d2
) = h(m1)h(m2).



8. (10 points) Show that ⌈
2x+ 1

2

⌉
−

⌈
2x+ 1

4

⌉
+

⌊
2x+ 1

4

⌋
is always either bxc or dxe. How can you know when each case will occur?

Answer: Notice that
⌈

2x+1
4

⌉
−
⌊

2x+1
4

⌋
will be 1 unless 2x+1

4 is an integer. Suppose 2x+1
4 = n. Then

2x+ 1 = 4n, so x = 4n−1
2 = 2n− 1

2 . This means that we have⌈
2x+ 1

2

⌉
−

⌈
2x+ 1

4

⌉
+

⌊
2x+ 1

4

⌋
=

⌈
2x+ 1

2

⌉
− 1+ [x = 2n− 1

2 ].

Now, write x = m+ α, where m = bxc and 0 6 α < 1. We have⌈
2x+ 1

2

⌉
− 1+ [x = 2n− 1

2 =

⌈
2(m+ α) + 1

2

⌉
− 1+ [m+ α = 2n− 1

2 ]

=

⌈
2m+ 2α+ 1

2

⌉
− 1+ [m = 2n− 1][α = 1

2 ]

= m+

⌈
α+

1

2

⌉
− 1+ [m = 2n− 1][α = 1

2 ]

If 0 6 α < 1
2 , this expression simplifies to m, which is bxc. If α > 1

2 , this simplifies to m+ 1 = dxe. If α = 1
2

and m is odd, this simplifies to m+ 1 = dxe, while if α = 1
2 and m is even, this simplifies to m = bxc.

9. (10 points) Prove or disprove:

bxc+ byc+ bx+ yc 6 b2xc+ b2yc .

Answer: Write x = m + α, where m = bxc and 0 6 α < 1, and y = n + β, where n = byc and 0 6 β < 1.
We have

bxc+ byc+ bx+ yc = m+ n+ bm+ n+ α+ βc = 2m+ 2n+ bα+ βc

while
b2xc+ b2yc = b2m+ 2αc+ b2n+ 2βc = 2m+ 2n+ b2αc+ b2βc .

So the problem reduces to seeing if bα+ βc is always less than or equal to b2αc+ b2βc.
Notice that bα+ βc is either 0 or 1. If bα+ βc = 1, then α+ β > 1, which implies that either α > 1

2 or
β > 1

2 . In the first case, we must have b2αc = 1, while in the second, we have b2βc = 1. In either event, the
inequality is true.

10. (20 points) Sometimes induction arguments work in unusual ways. Consider the statement

P(n) : x1 · · · xn 6

(
x1 + · · ·+ xn

n

)n

, if x1, . . . , xn > 0

(a) Prove that P(2) is true.

(b) By setting xn = (x1 + · · ·+ xn−1)/(n− 1), prove that P(n) implies P(n− 1) whenever n > 1.

(c) Show that P(n) and P(2) imply P(2n).

(d) Explain why these three steps imply that P(n) is true for all positive integers n.



Answer: (a) P(2) is the statement that ab 6
(

a+b
2

)2. To prove this inequality, start with
(

a−b
2

)2
> 0

(which is true because a square is always non-negative), and then add ab to both sides of the inequality.
(b) Suppose that P(n) is true, and set xn = (x1 + · · ·+ xn−1)/(n− 1). We have

x1 · · · xn−1xn 6

(
x1 + · · ·+ xn−1 + xn

n

)n

x1 · · · xn−1

(
x1 + · · ·+ xn−1

n− 1

)
6

(
x1 + · · ·+ xn−1

n
+
xn

n

)n

=

(
x1 + · · ·+ xn−1

n
+
x1 + · · ·+ xn−1

n(n− 1)

)n

=

(
(x1 + · · ·+ xn−1)(n− 1)

n(n− 1)
+
x1 + · · ·+ xn−1

n(n− 1)

)n

=

(
(x1 + · · ·+ xn−1)(n)

n(n− 1)

)n

=

(
x1 + · · ·+ xn−1

n− 1

)n

x1 · · · xn−1 6

(
x1 + · · ·+ xn−1

n− 1

)n−1

This is P(n− 1), so we have shown that P(n) implies P(n− 1).
(c) Suppose that both P(2) and P(n) are true. We will prove P(2n) by applying first P(n) and then P(2).

We have

x1 · · · xnxn+1 · · · x2n = (x1 · · · xn) (xn+1 · · · x2n) 6

(
x1 + · · ·+ xn

n

)n(
xn+1 + · · ·+ x2n

n

)n

(x1 · · · xnxn+1 · · · x2n)
1
n 6

(
x1 + · · ·+ xn

n

)(
xn+1 + · · ·+ x2n

n

)

6

((
x1+···+xn

n

)
+
(

xn+1+···+x2n

n

)
2

)2

=

(
x1 + · · ·+ x2n

2n

)2

x1 · · · xnxn+1 · · · x2n 6

(
x1 + · · ·+ x2n

2n

)2n

This last inequality is P(2n).
(d) We have now shown that P(2)&P(n) ⇒ P(2n) and P(n) ⇒ P(n−1). The first implication shows that

P(2k) is true for all k, and then the second, applied repeatedly, shows that P(n) is true for all n.

Grade Number of people
84 1
80 1
68 1
65 1
61 1
59 1
52 1
29 1

Mean: 62.25
Standard deviation: 16.01


