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PRIME SPECIALIZATION IN GENUS 0

BRIAN CONRAD, KEITH CONRAD, AND ROBERT GROSS

Abstract. For a prime polynomial f(T ) ∈ Z[T ], a classical conjecture pre-
dicts how often f has prime values. For a finite field κ and a prime polynomial

f(T ) ∈ κ[u][T ], the natural analogue of this conjecture (a prediction for how
often f takes prime values on κ[u]) is not generally true when f(T ) is a poly-
nomial in T p (p the characteristic of κ). The explanation rests on a new global
obstruction which can be measured by an appropriate average of the nonzero
Möbius values µ(f(g)) as g varies. We prove the surprising fact that this
“Möbius average,” which can be defined without reference to any conjectures,
has a periodic behavior governed by the geometry of the plane curve f = 0.

The periodic Möbius average behavior implies in specific examples that a
polynomial in κ[u][T ] does not take prime values as often as analogies with
Z[T ] suggest, and it leads to a modified conjecture for how often prime values
occur.

1. Introduction

A conjecture of Bouniakowsky [5] says that a nonconstant prime polynomial f(T )
in Z[T ] has infinitely many prime values in Z unless there is a local obstruction:
all values of f(T ) on Z are divisible by a nontrivial common factor. For example,
3T 2 − T + 2 is prime in Z[T ] but has an obstruction at 2 to taking prime values:
3n2 −n+2 is even for every n ∈ Z. (We allow negative primes, so we don’t need to
assume f(T ) has a positive leading coefficient.) When no local obstruction occurs,
there is an asymptotic conjecture (as x → ∞) for how many 1 ≤ m ≤ x (or |m| ≤ x)
give prime values f(m); this is due to Hardy and Littlewood [12] in special cases
and Bateman and Horn [1] more generally. The only proved case is in degree 1:
the prime number theorem is the case f(T ) = T and Dirichlet’s theorem is the case
f(T ) = aT + b with a and b nonzero and relatively prime.

Let κ be a finite field and pick a prime polynomial f(T ) in κ[u][T ] which is
nonconstant in T such that the values of f(T ) on κ[u] do not all share a nontrivial
common factor (we say f(T ) has no local obstruction). Qualitatively, it is natural
to expect under these conditions that f(g) is prime for infinitely many g in κ[u].
Quantitatively, a conjectural asymptotic estimate for how often f(g) is prime as
g varies is easy to write down using analogies between Z (which we will call the
classical case) and κ[u]. The only proved instance of this asymptotic conjecture is
the case degT f = 1, just as in the classical situation. What if degT f > 1?
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When κ has characteristic 2 it is shown in [15] that the values of T 8 +u3 on κ[u]
are never prime when [κ : F2] is odd and are prime only finitely many times (at
noncubes in κ) when [κ : F2] is even. Here are some interesting examples in odd
characteristic.

Example 1.1. Let f(T ) = T 12 + (u + 1)T 6 + u4 over F3[u]. Numerical evidence
in [6, Table 3] suggests that the count of prime values of f(g) as g runs over F3[u]
exceeds the amount predicted from analogies with the classical case by a ratio
≈ 1.33.

Example 1.2. Let f(T ) = T 9 +(2u2 +u)T 6 +(2u+2)T 3 +u2 +2u+1 over F3[u].
Numerical data in [6, Table 5] suggest that f(g) is prime as often as expected (by
analogies with the classical case) when deg g is even, it is never prime when deg g ≡
1 mod 4, and it is prime about twice as often as expected when deg g ≡ 3 mod 4.
In particular, the statistical behavior seems to depend on the mod 4 value of the
degree in which we are sampling f . The absence of a prime f(g) for deg g ≡ 1 mod 4
will be proved in Example 6.10.

We observed three common features of prime polynomials in κ[u][T ] whose pri-
mality statistics do not seem to match expectations based on analogies to the
classical case:

• The polynomial f(T ) lies in κ[u][T p], where p is the characteristic of κ;
equivalently (since f(T ) is irreducible over κ(u)) f(T ) is inseparable over
κ(u).

• The ratio between the actual number of prime values f(g), as g runs over
polynomials with a common degree n, and the conjectural asymptotic es-
timate for that number based on analogies to the classical case appears to
have a limit as n → ∞ if we fix n mod 4. However, the apparent limit
(which is not necessarily 1) may be different for different classes mod 4,
and there are 1, 2, or 4 apparent limits (never 3).

• The Möbius function for κ[u] (see Definition 2.1) has unusual statistics on
the values f(g). Roughly speaking, the nonzero values of µ(f(g)) may fail
to be 1 and −1 equally often.

The main impact of the third observation is that statistics for prime values of
f(g) as g varies can be linked to appropriate averages of the nonzero values of
µ(f(g)) as g varies (and the averages we define are effectively computable in any
example). Subtracting these averages from 1 enables us to predict the 1, 2, or 4
apparent limits in the second observation. A simple example is the polynomial
f(T ) in Example 1.1. As g runs over the polynomials in F3[u][T ] having a common
degree ≥ 2 the value µ(f(g)) is −1 twice as often as it is 1 (by Example 3.2), so
the average nonzero value of µ(f(g)) in each degree (at least 2) is exactly −1/3.
Subtracting this from 1 gives 4/3 = 1.33 . . . , which matches the deviation we found
in Example 1.1.

The theme of this paper is the study of µ(f(g)) when f(T ) is a polynomial in
κ[u][T p] which is squarefree in κ[u][T ]. The intended application of this work, which
we will give in the final section, is the formulation of a conjecture for the frequency
of prime values of f(T ) when f(T ) is a prime polynomial. However, our work on
µ(f(g)) does not require that f(T ) be prime. Letting f(T ) be squarefree instead
provides greater technical flexibility. For instance, squarefreeness is preserved under
finite extension of the constant field κ.
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Here is an outline of the paper. In §2 and §3 we discuss some general features of
the Möbius function, discriminants, and resultants relative to κ[u]. This builds on
ideas of Swan [15] and is applied in §4 where we prove that µ(f(g)), under suitable
hypotheses, is periodic in g when κ has odd characteristic (see Theorem 4.8). In §5
we treat characteristic 2, which is more difficult. For instance, we need to use 2-adic
lifts and residues of differential forms (Theorem 5.10). Finally, §6 uses these ideas
to define a notion of Möbius average that seems to work well as a new correction
factor for asymptotically estimating how often a prime polynomial in κ[u][T ] takes
prime values on κ[u] (Conjecture 6.2).

While the classical conjectures on prime values of prime polynomials in Z[T ]
involve only local obstructions, the Möbius average in the κ[u]-setting is a funda-
mentally global obstruction. The Möbius function could be considered as a “par-
ity” obstruction to prime values once we know f(g) is squarefree (crudely put, if
µ(f(g)) = 1 then f(g) is definitely not prime). We have not found a role for a sim-
ilar type of obstruction to prime values based on the number of irreducible factors
of the squarefree values of f(g) counted modulo 3 or higher, and our correction
based on Möbius averages gives an excellent fit with all observed numerics.

Notation and terminology. Throughout the paper, κ denotes a finite field of
characteristic p and size q. We often write χ instead of χκ to denote the quadratic
character on the multiplicative group κ× when p �= 2.

For a nonzero polynomial h in one variable, we write the leading coefficient as
lead h. For a nonzero polynomial f in two variables u and T over a ring R, the
T -degree of f and the leading coefficient of f as a polynomial in T are indicated
with a subscript: degT f ≥ 0 and leadT f ∈ R[u]. We write degu,T f to denote
the total degree of such an f . An element in R[u] is primitive when its coefficients
generate the unit ideal in R. When R is a domain, the discriminant of a nonzero
one-variable polynomial h with coefficients in R is denoted disc h, or discR h for
emphasis. Our definition of polynomial discriminants does not match the usual
definition when the polynomial is not monic; see (2.3) and (2.4).

Let R be a local ring with residue field k. A lift of a polynomial h ∈ k[u][T ]
is a polynomial H ∈ R[u][T ] whose reduction to k[u][T ] is h. The length of an
R-module M is denoted �(M), and if Z is an Artinian scheme then �(Z) denotes
the length of the ring Γ(Z,OZ).

2. The Möbius function over finite fields

Definition 2.1. Let R be a Dedekind domain. The Möbius function on nonzero
ideals of R is µR(p1 · · · pm) = (−1)m for distinct nonzero prime ideals pj , µR((1)) =
1, and µR(b) = 0 for any nonzero ideal b ⊆ R divisible by the square of a prime.
For nonzero r ∈ R, we define µR(r) = µR(rR). If R is understood from the context,
we write µ rather than µR.

The first step in the analysis of µκ[u](f(g)) when f ∈ κ[u][T p] is fixed and g ∈ κ[u]
varies is the derivation of a formula for µκ[u](h) (for any nonzero h ∈ κ[u]) in terms
of the discriminant of h. (This has no known analogue for the Möbius function on
Z.) The Möbius function of h (for h �= 0) can be viewed as the Möbius function of
the finite κ-algebra κ[u]/(h) via the following definition.

Definition 2.2. Let κ be a finite field. For a finite κ-algebra A, let µ(A) =
(−1)#Spec A if A is étale over κ (i.e., reduced) and let µ(A) = 0 otherwise.
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Theorem 2.3. Suppose κ is finite with odd characteristic, and let χκ be the qua-
dratic character on κ×, with χκ(0) = 0. For any finite κ-algebra A,

(2.1) µ(A) = (−1)dimκ Aχκ(discκ A).

Proof. We immediately reduce to the case when A is a finite extension field of κ,
and this is settled as in the proof of [6, Lemma 4.1] by computing the sign of a
Galois-theoretic Frobenius as a permutation. �

We need an analogue of Theorem 2.3 in characteristic 2 that still involves dis-
criminants. This analogue will use a lifting of A into characteristic 0. We shall
now formulate a setup for finite κ with arbitrary characteristic, extending work of
Swan [15]. (Swan essentially obtained Theorem 2.4 below and applied it to compute
µκ[u](h) in a few examples, although he expressed his answer directly in terms of
the parity of the number of irreducible factors instead of in terms of the Möbius
function.)

Let κ be a finite field of characteristic p and W = W (κ) be the ring of Witt
vectors of κ. Consider finite flat W -algebras Ã such that Ã/pÃ is isomorphic to A as
κ-algebras. For instance, a finite flat lifting of κ[u]/(h(u)) over W is W [u]/(H(u)),
where H ∈ W [u] satisfies H mod p = h and deg H = deg h. By Hensel’s lemma,
if A is étale over κ, then Ã exists (and is finite étale over W ) and is unique up to
unique W -isomorphism. If A is not étale over κ, a finite flat lifting of A over W
may not exist (see [4, Example 3.2(4)]).

Suppose κ has characteristic 2 and A is étale over κ, so discW Ã ∈ W×/(W×)2.
Embed κ× into W× by the Teichmüller lifting, so W× = κ××(1+2W ). The 1-unit
part of discW Ã lies in 1 + 4W . (Ambiguity of discW Ã up to a unit-square does
not affect the meaning of this assertion, since (1 + 2w)2 ∈ 1 + 4W for all w ∈ W .)

Theorem 2.4. For any finite κ-algebra A that admits a finite flat lifting Ã of A
over W ,

(2.2) µ(A) = (−1)dimκ Aχ̃(discW Ã),

where χ̃ is the unique quadratic character on W× when κ has odd characteristic
and is the unique quadratic character on κ× × (1 + 4W ) killing (W×)2 when κ has
characteristic 2. (An explicit formula for χ̃ in the characteristic 2 case is given in
(5.24), where the formula is first needed.) In both cases, χ̃ is extended by 0 to pW .

The proof, which we omit, goes exactly as for Theorem 2.3, except that unram-
ified extensions of the fraction field of W are used instead of finite extensions of
κ.

When F is a field and h in F [u] is nonconstant of degree d with roots γ1, . . . , γd

(counted with multiplicity) in a splitting field, we define the discriminant of h to
be

(2.3) disc h :=
∏
i<j

(γi − γj)2 ∈ F,

whether or not h is monic. (The discriminant of a nonzero constant polynomial
is understood to be 1.) The usual definition of disch has an additional square
factor (lead h)2d−2, which makes the discriminant a homogeneous function of the
coefficients of h. We prefer to use our definition since it agrees with the universally
accepted definition of the discriminant of the finite F -algebra F [u]/(h) relative to
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the ordered basis {1, u, . . . , ud−1}, whether or not h is monic. In terms of the
derivative of h, (2.3) is the same as

(2.4) disc h =
(−1)d(d−1)/2

(leadh)d

d∏
i=1

h′(γi) =
(−1)d(d−1)/2

(leadh)d
N(F [u]/(h))/F (h′).

Theorems 2.3 and 2.4 give

(2.5) µκ[u](h) =

{
(−1)deg hχ(discκh), if κ has odd characteristic,
(−1)deg hχ̃(discW H), if κ has any characteristic,

where H is a lifting of h into W [u] with deg H = deg h. (Since our polynomial
discriminants differ from the usual definition by a square factor, the usual definition
can also be used in (2.5).) The formula in (2.5) for the case of characteristic 2 uses a
discriminant in characteristic 0. There is an intrinsic variant of the discriminant in
characteristic 2 (see [3]), but we have not found this to be useful for our purposes.

Example 2.5. Let κ be a finite field with characteristic p �= 2. For nonconstant
g = cun + · · · ∈ κ[u] we see via (2.4) and (2.5) that

µ(gp + u) = (−1)nχ(c)nχ(−1)n(pn−1)/2.

When n is odd, this equals 1 and −1 equally often as g varies in degree n. When
n is even, µ(gp + u) equals χ(−1)n/2 for all g of degree n. For instance, when
n ≡ 0 mod 4, µ(gp + u) = 1 for all g of degree n. Thus gp + u is not prime when
4| deg g and deg g > 0.

3. Discriminants and resultants

We wish to understand the behavior of µ(f(g)) when f ∈ κ[u][T p] is fixed with
degT f > 0 and g varies in κ[u] with large degree. Formula (2.5) suggests, at
least for p �= 2, that we should study disc(f(g)) as an algebraic function of g with a
specified degree n, where n is large. (We need n at least large enough that deg(f(g))
depends on g only through its degree n.) Following Swan [15], we will find it useful
to work with resultants rather than discriminants.

For an integral domain C, the resultant of two nonzero polynomials h1 and h2

in C[u], denoted RC(h1, h2) = R(h1, h2), is defined to be

(3.1) R(h1, h2) = (leadh1)deg h2
∏

h1(α)=0

h2(α)

with the product running over the roots of h1 (counted with multiplicity) in a
splitting field over the fraction field of C. There is a classical expression for R(h1, h2)
given as the determinant of a universal matrix in the coefficients of h1 and h2, and
the size of the matrix depends on the degrees of h1 and h2. Write Rd1,d2(h1, h2)
to indicate that hj is being treated as a polynomial of degree dj for the resultant
calculation via a universal determinant. We make the convention that when a
resultant R(h1, h2) appears without degree subscripts, then it is defined in terms
of the actual degrees of its arguments if h1 and h2 are nonzero. When some hj

vanishes we define R(h1, h2) = 0, which is compatible with universal determinants
that define resultants (letting the zero polynomial be assigned whatever positive
degree we please).
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If nonzero h1 and h2 have actual degrees d1 and d2, then for any d3 ≥ d2,

(3.2) Rd1,d3(h1, h2) = (leadh1)d3−d2Rd1,d2(h1, h2).

Though (3.1) is valid as written when h2 is given a fake higher degree (still denoted
deg h2), it is generally not valid when h1 is given a fake higher degree.

Warning. Failure to remember that resultants are sensitive to degrees can
lead to errors when universal formulas over Z (such as (3.3) below) are used in
characteristic p > 0.

The relation between discriminants and resultants is given by the formula

(3.3) disc h =
(−1)d(d−1)/2Rd,d−1(h, h′)

(leadh)2d−1
,

where d = deg h ≥ 1. If h′ �= 0 then this formula simplifies by (3.2) to

(3.4) disc h =
(−1)d(d−1)/2R(h, h′)

(leadh)d+deg h′ ,

where R(h, h′) is the resultant of h and h′ computed with a determinant whose
size is based on the actual degree of h′ (which might be less than d − 1 in positive
characteristic).

Example 3.1. Let f(T ) = T 9 + (2u2 + u)T 6 + (2u + 2)T 3 + u2 + 2u + 1 in
κ[u][T ], where κ has characteristic 3. (Example 1.2 is κ = F3.) For nonconstant
g = cun + . . . in κ[u] with c �= 0, f(g) has degree 9n with leading coefficient c9 and
f(g)′ = (∂uf)(g) has degree 6n + 1 < 9n − 1. By (3.4),

(3.5) disc f(g) =
(−1)n(n−1)/2R(f(g), (∂uf)(g))

(c9)15n+1
.

Here R(f(g), (∂uf)(g)) = R9n,6n+1(f(g), (∂uf)(g)). If instead we use (c9)2d−1 =
(c9)18n−1 in the denominator (see (3.3)), then an erroneous factor of (c9)3n−2 is
introduced in (3.5), and this extra power of c affects the quadratic character of the
right side of (3.5). In view of (2.5), such an error would lead to incorrect calculations
of µ(f(g)).

Resultants have several useful algebraic properties. We state five of them without
proof, as in [15]. In this list, polynomials are nonzero and have coefficients in a
domain C.

(1) R(h1, h2) = (−1)(deg h1)(deg h2)R(h2, h1).
(2) R(h1, h2) is bimultiplicative:

R(h1h3, h2) = R(h1, h2)R(h3, h2), R(h1, h2h3) = R(h1, h2)R(h1, h3).

(3) R(u, h) = h(0). More generally, R(u − c, h) = h(c) and R(h, u − c) =
(−1)deg hh(c) for c ∈ C.

(4) R(c, h) = R(h, c) = cdeg h for c ∈ C, h �= 0. Thus, R(c1, c2) = 1 for
c1, c2 �= 0 in C.

(5) For nonzero M , h1, h2 in C[u],

h1 ≡ h2 mod M =⇒ R(M, h1) = (leadM)deg h1−deg h2R(M, h2).
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We call property (5) the quasi-periodicity of the resultant (in its second argu-
ment). For monic M in C[u] and any f(T ) ∈ C[u][T ], R(M, f(h)) is genuinely
periodic in h. The notation R(h1, h2) in [15] differs by a sign factor from the defi-
nition of resultants generally used today; it denotes our R(h2, h1), so comparisons
with [15] must keep this distinction in mind.

Example 3.2. Let f(T ) = T 12 + (u + 1)T 6 + u4 ∈ κ[u][T ] with char(κ) = 3, as in
Example 1.1. Let q = #κ. We shall compute µ(f(g)) when n = deg g ≥ 1.

Let h = f(g), so h′ = g6 + u3 = (g2 + u)3. Since deg h = 12n, deg h′ = 6n,
and leadh is a square, (2.5) and (3.4) give µ(f(g)) = χ(R(f(g), (g2 + u)3)) =
χ(R(g2 + u, f(g))). Since f(g) ≡ u6 − u3 mod g2 + u, quasi-periodicity of the
resultant gives

R(g2 + u, f(g)) = (lead g)2(12n−6)R(g2 + u, u6 − u3).

But R(g2 + u, u6 − u3) = R(g2 + u, u)3R(g2 + u, u − 1)3 = g(0)6(g(1)2 + 1)3, so

(3.6) µ(f(g)) = χ(g(0))2χ(g(1)2 + 1).

(Further calculations show that disc f(g) = (lead g)−36(4n+1)g(0)18(g(1)2+1)9.) As
g runs over all polynomials of a given degree n ≥ 2 in κ[u], g(0) and g(1) can be
“independently assigned” (think about g mod u(u − 1)). So, for instance, if −1 is
not a square in κ, we see that µ(f(g)) vanishes 1/q of the time (when g(0) = 0),
and is −1 twice as often as it is 1.

Example 3.3. Let f(T ) = T 9 + (2u2 + u)T 6 + (2u + 2)T 3 + u2 + 2u + 1 ∈ κ[u][T ],
with char(κ) = 3, as in Example 1.2. For nonconstant g(u) = cun + · · · with degree
n ≥ 1, deg(f(g)) = 9n and deg(f(g)′) = 6n + 1, so µ(f(g)) = (−1)nχ(disc f(g)) by
(2.5). By (3.5),

(3.7) µ(f(g)) = (−1)n(χ(−1))n(n−1)/2χ(c)n+1χ(R(f(g), (∂uf)(g))).

Since the algebraic properties of resultants are analogous to the algebraic proper-
ties of intersection numbers of plane curves, a recursive algebraic procedure that
imitates the computation of such intersection numbers (as is given in detail in the
proof of Theorem 4.1) yields

(3.8) R(f(g), (∂uf)(g)) = c54n−6(g(1)2 + g(1) + 2)3g(2)9.

Inserting (3.8) into (3.7), we find our Möbius formula:

(3.9) µ(f(g)) = (−1)nχ(−1)n(n−1)/2χ(c)n+1χ(g(1)2 + g(1) + 2))χ(g(2))

for nonconstant g in κ[u]. This depends on g mod (u − 1)(u − 2), deg g mod 4,
and the quadratic character of the leading coefficient of g. This formula shows
that Möbius behavior can change upon extension of the ground field: when −1
is a square in κ, the term χ(−1)n(n−1)/2 drops out, so dependence of µ(f(g)) on
deg g mod 4 drops to dependence on deg g mod 2.

Definition 3.4. If f1, f2 ∈ F [u][T ] are two nonzero polynomials over a perfect
field F such that their zero loci Zf1 and Zf2 in A2

F have finite intersection, define
Mgeom

f1,f2
to be the monic separable polynomial in F [u] whose zero locus is the image

of Zf1 ∩ Zf2 in the u-axis (so Mgeom
f1,f2

= 1 if Zf1 ∩ Zf2 is empty, such as when some
fj lies in F×). When f ∈ F [u][T ] is nonzero, define Mgeom

f := Mgeom
f,∂uf when this

makes sense (i.e., when ∂uf �= 0 and Zf ∩ Z∂uf is finite).
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For applications to prime values of polynomials in κ[u][T ] we will use the last part
of Definition 3.4, so let us describe Mgeom

f more geometrically. The projection from
the zero locus Zf to the T -axis is flat and generically étale, so this projection is non-
étale at a finite set of points on Zf , say at the set B. The image of B in the u-axis
is a finite set of geometric points. Then Mgeom

f is the monic polynomial in κ[u] that
vanishes precisely at this finite set on the u-axis, with each root having multiplicity
1 (so Mgeom

f is squarefree). If the leading coefficient cd(u) of f(T ) ∈ κ[u][T ] does
not have double roots, then Mgeom

f is the radical of the κ[u]-resultant of f and ∂uf .
For f ∈ F [u][T ] with f �∈ F , the following lemma gives sufficient conditions for

Mgeom
f to be defined when F has positive characteristic.

Lemma 3.5. Let F be perfect of characteristic p > 0.
1) Choose a nonzero f ∈ F [u][T p] such that f is squarefree in F [u][T ]. Then f

and ∂uf have no nonconstant common factor in F [u][T ], or equivalently the zero
loci {f = 0} and {∂uf = 0} in the affine plane A2

F intersect at finitely many points.
2) If f ∈ F [u][T ] is nonzero and f(T p) is squarefree in F [u][T ] (so f is squarefree

in F [u][T ]), then f and ∂uf have no nonconstant common factor in F [u][T ].

Note that if f �∈ F then f(T ) cannot lie in F [up][T ] under either hypothesis in
the lemma, so ∂uf �= 0 in such cases. It may happen that ∂uf is constant; e.g.,
f = upT p + u + 1 (or f = u). The second case in Lemma 3.5 will be used only
when p = 2.

Proof. It suffices to check the second part, since if f is in F [u][T p] and is squarefree
in F [u][T ] then f(T p) is squarefree in F [u][T ].

The case f ∈ F× is trivial, so we may assume f �∈ F . In particular, ∂uf �= 0. Let
Zf and Z∂uf be the respective zero loci of f and ∂uf in the affine plane (Z∂uf may be
empty). Since F is perfect, extending scalars to an algebraic closure of F preserves
the property of being squarefree, and hence we may assume F is algebraically
closed. The hypothesis on f in case (2) implies that f(T p) is a squarefree element
in F (T p)[u] with nonzero u-derivative, so the image of Zf ∩Z∂uf in the T -axis does
not contain the generic point and hence is F -finite. To conclude the finiteness of
Zf ∩ Z∂uf it therefore suffices (since F is algebraically closed) to prove that Zf

contains no lines T = c for c ∈ F . But if Zf contains such a line then f(T p) is
divisible by T p − c = (T − c1/p)p, contrary to the squarefreeness hypothesis. �

4. A resultant formula

Our goal in this section is to show that for p �= 2, polynomials f(T ) in κ[u][T p]
which are squarefree in κ[u][T ] have “periodic” Möbius values: for g ∈ κ[u] with
sufficiently large degree, µ(f(g)) is determined by (i) the reduction of g modulo
some nonzero M ∈ κ[u], (ii) the mod-4 congruence class of the degree of g, and (iii)
the quadratic character of the leading coefficient of g (cf. Example 3.3). This will
be proved as Theorem 4.8 via a periodicity property for resultants over arbitrary
perfect fields.

We indulge in the following notational device: for a field F and a nonzero M ∈
F [u], we write F [u]/(M) to denote the vector-scheme of remainders upon long
division by M over F -algebras A. That is, F [u]/(M) is viewed as an affine space of
dimension deg M , whose coordinates arise from coefficients of ui for 0 ≤ i < deg M .
The context will indicate whether F [u]/(M) denotes an affine space over SpecF or
its set of F -valued points, the “usual” F -vector space F [u]/(M).
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We will also work with the scheme

Polyn/F = An ×Spec F Gm = SpecF [a0, . . . , an, 1/an]

of polynomials of exact degree n ≥ 0, as well as the scheme

Poly≤n/F = An+1
F = SpecF [a0, . . . , an]

of polynomials of degree ≤ n. The coordinates (a0, . . . , an) correspond to
∑

i≤n aiu
i,

with Polyn/F the locus in Poly≤n/F where an is a unit. For example, given non-
constant M ∈ F [u] and any n ≥ deg M , the formation of remainders under long
division by M defines an algebraic morphism

(4.1) ρn,M : Polyn/F → F [u]/(M) � Poly≤(deg M−1)/F

that is a trivial Polyd/F -bundle with d = n−deg M , by the division algorithm. We
interpret Poly≤−1/F to be a 1-point space, so when M ∈ F× the map

(4.2) ρn,M : Polyn/F → SpecF

is the structure map to a point.
Let f ∈ F [u][T ] be a nonzero element with T -degree d. It will be useful later

to record the simple formulas for the degree and leading coefficient of f(g) ∈ F [u]
when d > 0 and g ∈ F [u] has deg g 
 0, and to make the condition deg g 
 0
effective. Write

(4.3) f(T ) = αd(u)T d + αd−1(u)T d−1 + · · · + α0(u),

with αd(u) �= 0 and d > 0. For g ∈ F [u] with sufficiently large degree (depending
on f), the degree and leading coefficient of f(g) in κ[u] are the same as those for
αdg

d:

deg(f(g)) = d · deg g + deg αd = (degT f)n + deg(leadT f),(4.4)

lead(f(g)) = (leadαd)(lead g)d,(4.5)

where n = deg g. In particular, deg(f(g)) is a linear polynomial in deg g when
deg g 
 0. An explicit lower bound on deg g, in terms of f , such that (4.4) and
(4.5) apply to f(g) is

(4.6) deg g > ν(f) := max
0≤i≤d−1

deg αi − deg αd

d − i
,

where terms with αi = 0 are omitted or use the convention that deg 0 = −∞. For
completeness, set ν(f) = 0 in the vacuous case that f(T ) = α(u)T d is a T -monomial
(no i’s to consider), with the case d = 0 permitted.

Since deg(f(g)) is determined by n = deg g for g of large degree (depending on
f , as in (4.4) and (4.6)), there is a well-posed algebraic discriminant function

(4.7) disc ◦ f : Polyn/F → A1
F

defined by g �→ disc(f(g)) when n is sufficiently large; note that (4.7) does not ex-
tend to an algebraic function on Poly≤n/F . Our aim is to understand the structure
of the algebraic function (4.7) for f as in Lemma 3.5, and in particular the extent to
which this function factors through the remainder morphism ρn,M for some nonzero
M ∈ F [u].

To exploit inductive arguments, it is convenient to reinterpret the study of
disc(f(g)) as the study of the resultant R(f(g), (∂uf)(g)). The utility of this
point of view is that it allows us to consider the more general algebraic function
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Polyn/F → A1
F defined by g �→ R(f1(g), f2(g)) for large n, with fixed nonzero

relatively prime f1, f2 ∈ F [u][T ] (a condition satisfied for f1 = f and f2 = ∂uf
under either hypothesis in Lemma 3.5 when f �∈ F ). The merit of this generality
is that we may separately vary f1 and f2. Restricting attention to F of positive
characteristic is not adequate: our later work in characteristic 2 will use the present
considerations with a 2-adic field F .

Theorem 4.1. Let F be a perfect field with any characteristic and let f1, f2 ∈
F [u][T ] be nonzero (possibly constant) elements with zero loci Zf1 and Zf2 in A2

F

that have finite intersection. For each x = (ux, tx) ∈ Zf1 ∩ Zf2 , let ix(Zf1 , Zf2) =
�(OZf1∩Zf2 ,x) be the local intersection number.

There exist c0, c1 ∈ F× and m0, m1 ∈ Z such that for g ∈ F [u] with sufficiently
large degree n, the resultant RF (f1(u, g), f2(u, g)) is given by

RF (f1(u, g), f2(u, g)) = c0c
n
1 (lead g)m0+m1n

∏
x∈Zf1∩Zf2

NF (x)/F (g(ux)−tx)ix(Zf1 ,Zf2 )

= c0c
n
1 (lead g)m0+m1nN(Zf1∩Zf2 )/ Spec F (g − T ),

where lead g ∈ F× is the leading coefficient of g (and the product is 1 if Zf1 ∩Zf2 =
∅); in fact, m1 = (degT f1) · (degT f2). The “sufficiently large” condition on n only
depends on the total degrees degu,T f1 and degu,T f2.

Theorem 4.1 will be proved near the end of this section after a lot of preparatory
work. The identity in Theorem 4.1 is really a universal algebraic identity for g
with coefficients in any F -algebra domain. The formulation of this identity is not
well-suited to our method of proof, so we will first prove a less precise version after
setting up some notation. Fixing f1 and f2 as in Theorem 4.1, for g ∈ F [u] of
degree n the degree of fj(g) ∈ F [u] is provided by (4.4) when n > ν(fj) (see (4.6)):
it is equal to

(4.8) dj,n := (degT fj)n + deg(leadT fj).

For n > max(ν(f1), ν(f2)) let G = a0 + a1u + · · · + anun ∈ F [a0, . . . , an][u]
denote the universal polynomial over the scheme Poly≤n/F = Spec F [a0, . . . , an] of
polynomials of degree ≤ n over F -algebras; we are not requiring an to be a unit.
Consider the following universal polynomial depending on f1 and f2:

(4.9) Rn(G) := RF [a0,...,an](f1(G), f2(G)) ∈ F [a0, . . . , an],

where the resultant is computed by viewing fj(G) as having u-degree dj,n. Since
n > ν(fj), dj,n is also the u-degree of the specialization of fj(G) at all field-valued
points of the open subscheme Polyn/F ⊆ Poly≤n/F where an is a unit.

Lemma 4.2. For any n > max(ν(f1), ν(f2)), Rn(G) in F [a0, . . . , an] is nonzero.

Proof. Specializing G to un + a0 commutes with formation of the resultant and
carries fj(G) to the polynomial fj(u, un + a0) that is obtained from fj(u, T ) via
the automorphism of the plane (u, a0) �→ (u, un + a0). Hence, the zero loci of
f1(u, un + a0) and f2(u, un + a0) in the (u, a0)-plane have finite intersection, so the
specialized F [a0]-resultant is nonzero. �

We want to understand the structure of Rn(G) as an algebraic function in the
aj ’s. For each of the finitely many intersection points x = (ux, tx) of Zf1 and Zf2

in A2
F , the finite extension F (x)/F is generated over F by the subextensions F (ux)

and F (tx).
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Definition 4.3. For n ≥ 1, define Px,n(a0, . . . , an) to be the norm-form polynomial

NF (x)[a0,...,an]/F [a0,...,an](a0 + a1ux + · · · + anun
x − tx) ∈ F [a0, . . . , an].

For any F -algebra F ′ and any g ∈ Poly≤n/F (F ′), we have

Px,n(g) = N(F (x)⊗F F ′)/F ′(g(ux ⊗ 1) − tx ⊗ 1) ∈ F ′.

Lemma 4.4. Assume n ≥ 1. For each x ∈ Zf1∩Zf2 such that F (x)/F is separable,
Px,n is irreducible in the coordinate ring of Poly≤n/F . If x and x′ are two such
distinct points, then Px,n and Px′,n are not unit multiples of each other in this
coordinate ring.

Proof. The extension F (x)/F is finite separable and Px,n is the norm of a polyno-
mial in F (x)[a0, . . . , an] whose coefficients generate F (x) over F (since n ≥ 1), so
the irreducibility is obvious. If L/F is a finite Galois extension into which F (x)
admits an F -embedding, then over L we see that Px,n factors as a product of linear
forms Pxi,n defined by the L-points xi of A2

F that lie over x. Thus, if x′ is another
point on Zf1 ∩ Zf2 such that F (x′)/F is separable, then the geometric zero locus
of Px,n is distinct from that of Px′,n. Hence, Px,n and Px′,n are not unit multiples
of each other. �

Now assume F is perfect, so Lemma 4.4 applies to all x ∈ Zf1 ∩ Zf2 . Each
Px,n is a non-unit in F (a1, . . . , an)[a0] and so is not an F×-multiple of an. Thus,
the conclusions of Lemma 4.4 also hold in the coordinate ring of Polyn/F . By
Definition 3.4 we have

(4.10) Mgeom
f1,f2

(u) =
∏
ux

NF (ux)/F (u − ux) ∈ F [u] − {0},

where ux runs over the distinct images of the x’s on the u-axis. In particular,
Mgeom

f1,f2
= 1 if Zf1 and Zf2 are disjoint. If g1, g2 ∈ F [u] have respective large degrees

n1 and n2, then from (4.10) and the definition Px,n(g) = NF (x)/F (g(ux) − tx) for
n ≥ deg g we see that

g1 ≡ g2 mod Mgeom
f1,f2

=⇒ Px,n1(g1) = Px,n2(g2)

where nj = deg gj .
For M := Mgeom

f1,f2
�= 0, consider the division-algorithm morphism ρn,M as in (4.1)

and (4.2). For each x ∈ Zf1 ∩Zf2 we have M(ux) = 0, so Px,n = Px,deg M−1 ◦ρn,M ;
note that deg M > 0 if such an x exists. The following theorem is a weak version
of Theorem 4.1 in the sense that the dependence on n for the parameters bn and
en in (4.11) is not made explicit; the proof of Theorem 4.1 will rest on this weaker
result.

Theorem 4.5. With the hypotheses as in Theorem 4.1, assume that n >
2 degu,T (f1) degu,T (f2) if f1, f2 �∈ F and assume n > max(ν(f1), ν(f2)) otherwise
(with ν(f) as in (4.6)).

There exists a unique bn ∈ F× and integer en ≥ 0 such that

(4.11) Rn(G) = bnaen
n ·

∏
x∈Zf1∩Zf2

P
ix(Zf1 ,Zf2 )
x,n = bnaen

n ·
∏

x∈Zf1∩Zf2

P
ix(Zf1 ,Zf2 )

x,deg M−1 ◦ρn,M
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as algebraic functions on Polyn/F , where M = Mgeom
f1,f2

as in Definition 3.4 and it
is understood that the products over x are taken to be 1 if Zf1 ∩ Zf2 is empty.

Beware that bn is generally sign-dependent on the ordering of the pair f1 and
f2.

Proof. We shall first establish a weaker form of (4.11) in which the intersection
number at each x is replaced with an unknown positive exponent ex,n. Since the
Px,n’s are irreducible and not scalar multiples of each other in the coordinate ring
of Polyn/F , to establish this weaker form of (4.11) it suffices (by the Nullstellensatz)
to show that the restriction of Rn(G) to Polyn/F has geometric zero locus equal to
the union of the geometric zero loci of the Px,n’s. If F/F is an algebraic closure,
then by separability of F (x)/F the irreducible factorization of Px,n in F [a0, . . . , an]
is the product of the Pxi,n’s for the F -points xi of A2

F over the physical point x.
Thus, we may assume F is algebraically closed and we wish to prove that if g ∈ F [u]
has large exact degree n then the resultant of f1(u, g(u)) and f2(u, g(u)) vanishes if
and only if g(ux) = tx for some x in the intersection of the zero loci Zfj

. But this
is obvious since the vanishing of the resultant says that f1(u, g(u)) and f2(u, g(u))
have a common root u0 ∈ F , and then x = (u0, g(u0)) lies on both zero loci Zfj

.
It remains to prove that ex,n = ix(Zf1 , Zf2) for all x ∈ Zf1 ∩ Zf2 and for n as

large as in the theorem. By perfectness of F it is harmless to assume that F is
algebraically closed, so we now assume this to be the case. If degT f1 = degT f2 = 0
or if some fj lies in F×, then there are no x’s and Rn(G) lies in F× and has no
dependence on n. Hence, we may suppose at least one of the fj ’s has positive T -
degree, say f2, and f1 �∈ F×. First assume degT f1 = 0, so f1 ∈ F [u] with positive
degree. By multiplicativity of local intersection numbers and resultants, we can
assume f1 = u − u0 for some u0 ∈ F . Thus, by quasi-periodicity of resultants and
the analogous property for local intersection numbers we can replace f2 with the
nonzero f2(u0, T ) ∈ F [T ] that we may assume has positive degree. We likewise
reduce to the case f2 = T − t0 with t0 ∈ F . Hence, Zf1 ∩ Zf2 = {(u0, t0)} with
intersection number 1 and clearly Rn(G) = (−1)n(G(u0) − t0), so e(u0,t0),n = 1 as
desired.

We may now assume that degT f1 and degT f2 are positive. Let us first argue by
deformation theory that ex,n ≥ ix(Zf1 , Zf2) for all x. (We are grateful to de Jong
for suggesting this approach, which generalizes to the case of higher genus [8].)
Consider any deformation f̃j of fj over F [[τ ]] with the same T -degree such that
leadT (f̃j) ∈ F [[τ ]][u] has leading F [[τ ]]-coefficient that is a unit, so its u-degree is
the same as that of its reduction leadT (fj) ∈ F [u]. Require also that degu,T (f̃j) =
degu,T (fj). For example, we may define f̃j = fj + τfj,0 for any fj,0 ∈ F [u][T ] such
that degT fj,0 = degT fj , degu leadT (fj,0) = degu leadT (fj), and degu,T (fj,0) =
degu,T (fj); a good choice of such fj,0 will be made later. The T -degree and u-degree
conditions on f̃1 and f̃2 ensure that R̃n(G) := RF [[τ ]](f̃1(u, G(u)), f̃2(u, G(u))) for
universal G with large degree n specializes to Rn(G) modulo τ .

The affine F [[τ ]]-scheme Zf̃1
∩ Zf̃2

is necessarily quasi-finite. Indeed,

RF [[τ ]][u](f̃1, f̃2) specializes to RF [u](f1, f2) �= 0, so if the F ((τ ))-fibers of the Zf̃j
’s

have a common irreducible component, then the f̃j ’s (which are τ -primitive) must
have a common τ -primitive factor in F [[τ ]][u] whose reduction modulo τ is neces-
sarily some c ∈ F× (as f1 and f2 do not have a common factor in F [u]). Such a
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common factor lies in c + τF [[τ ]][u] and must have positive u-degree (as otherwise
it is a unit), so each leadT (f̃j) ∈ F [[τ ]][u] is forced to have its top-degree coef-
ficient divisible by τ . This contradicts how the f̃j ’s were chosen, so the desired
quasi-finiteness holds. Also, the degu,T -condition on the f̃j ’s ensures that n is “suf-
ficiently large” for comparing generic and specialized resultants for f̃1 and f̃2 over
F [[τ ]] in degree n.

Since {f1, f2} is a regular sequence in F [u][T ], by [13, Cor. to 22.5] the F [[τ ]]-
scheme Zf̃1

∩ Zf̃2
is flat in a neighborhood of its closed fiber and so is flat. Hence,

the “finite part” of this quasi-finite flat F [[τ ]]-scheme (in the sense of the structure
theorem [11, 18.5.11] is a finite flat F [[τ ]]-scheme whose points are naturally labelled
by the points x of Zf1 ∩Zf2 , and the x-component has rank ix(Zf1 , Zf2) over F [[τ ]]
because F is algebraically closed.

We next claim that the deformations f̃j can be chosen so that the F ((τ ))-fibers
of the Zf̃j

’s are smooth and their finite intersection is F ((τ ))-étale. Fix j ∈ {1, 2}
and consider the F -vector space spanned by u, T , and the monomials that ap-
pear in fj . This vector space of functions contains fj and (since degT fj > 0) its
generic member has T -degree equal to degT fj , leading T -coefficient with u-degree
degu(leadT (fj)), and total (u, T )-degree degu,T (fj). This defines a closed immer-
sion of the affine (u, T )-plane into an affine space ANj . By Bertini’s theorem there
is a Zariski-dense open locus Wj of affine hyperplanes in ANj whose members have
smooth intersection with the (u, T )-plane. In particular, if fj,0 is generically chosen
in Wj , then the pencil fj + τfj,0 has all but finitely many members with smooth
zero locus in the (u, T )-plane and it satisfies the degree requirements (over F [τ ])
that we have demanded for f̃j (over F [[τ ]]). Taking this pencil to define f̃j over
F [[τ ]] therefore makes the Zf̃j

’s have smooth F ((τ ))-fibers, so it remains to arrange
the choices of f1,0 and f2,0 to ensure that Zf̃1

∩ Zf̃2
is F ((τ ))-étale.

We fix any f2,0 ∈ W2 as above and will choose f1,0 ∈ W1 appropriately. The zero-
scheme of f2,0 is smooth in the (u, T )-plane, so a Zariski-dense open locus of affine
hyperplanes in AN1 therefore meets this zero-scheme with étale overlap and does
not meet the part of its closure in PN1 that lies in the hyperplane at infinity. Thus,
we can choose the pencil of affine hyperplanes f̃1 = f1 + τf1,0 so that Zf1,0 ∩ Zf2,0

is étale and coincides with the overlap of the closures of the Zfj,0 ’s in PN1 . The
overlap of the associated pencils of projective hyperplanes in PN1 (with parameter
τ ∈ P1 for the two pencils) is therefore finite and flat over a neighborhood of τ = ∞
in P1, so it is (finite and) étale over such a neighborhood as well. With this choice
of f1,0, the intersection Zf̃1

∩ Zf̃2
over F ((τ )) is étale.

Let K be an algebraic closure of F ((τ )). With the f̃j ’s as just chosen, the quasi-
finite flat overlap Zf̃1

∩ Zf̃2
over F [[τ ]] with étale generic fiber contains exactly

ix(Zf1 , Zf2) points on the geometric generic fiber (over K) that specialize to x. The
universal resultant R̃n(G) associated to f̃1 and f̃2 over K is a determinant that lies
in F [[τ ]][a0, . . . , an] and (as we noted earlier) it specializes to Rn(G) under reduction
modulo τ . Thus, by applying the proved weak form of (4.11) (with exponents
ex,n positive but not yet known) to the f̃j ’s over K, each K-point of Zf̃1

∩ Zf̃2

that specializes to x contributes a linear factor to R̃n(G) over K[a0, . . . , an] with
coefficients in the integral closure O of F [[τ ]] in K, and this element of O[a0, . . . , an]
has reduction modulo the maximal ideal of O equal to the irreducible Px,n =
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i
x − tx (that involves a0) over F . By Gauss’ lemma over a sufficiently large

finite extension of F ((τ )), each such K-point of Zf̃1
∩ Zf̃2

therefore contributes a

factor to R̃n(G) in O[a0, . . . , an] with reduction Px,n, and these factors are pairwise
relatively prime over K. There are ix(Zf1 , Zf2) such K-points, so overall we see that
Px,n divides Rn(G) with multiplicity at least as large as this intersection number.
This gives the desired inequality ex,n ≥ ix(Zf1 , Zf2).

To deduce equality for all x, by adding these inequalities for all x it is enough
to prove that

∑
x ex,n is equal to the F -length of Zf1 ∩ Zf2 . Each Px,n is a linear

polynomial in the aj ’s with exact degree 1 in a0. Hence,
∑

x ex,n is the a0-degree
of Rn(G). Consider the specialization map F [a0, . . . , an][1/an] → F [T ] that carries
G to hn(u) + T ∈ F [u][T ] with hn(u) ∈ F [u] defined to be

(4.12) hn(u) := un−
∑

x(ix(Zf1 ,Zf2 )+1) ·
∏
x

(u − ux)ix(Zf1 ,Zf2 )+1.

The factor given by the power of u in this definition has a nonnegative exponent due
to Bézout’s theorem and the largeness hypothesis on n. This specialization mapping
carries a0-degree to T -degree and Rn(G) to RF [T ](f1(u, hn(u)+T ), f2(u, hn(u)+T ))
(due to the largeness of n), so∑

x

ex,n = degT RF [T ](f1(u, hn(u) + T ), f2(u, hn(u) + T )).

Our problem is therefore to prove

degT RF [T ](f1(u, hn(u) + T ), f2(u, hn(u) + T )) ?= �(Zf1 ∩ Zf2)

for n as large as in the theorem. Due to the largeness of n, each gj(u, T ) =
fj(u, hn(u)+T ) has leading coefficient in F× when considered as a polynomial in u
(with coefficients in F [T ]). Hence, by the following lemma, the above T -degree of
the resultant is equal to the length of the (necessarily F -finite) intersection scheme
of the zero loci of the polynomials gj(u, T ).

Lemma 4.6 (Zeuthen’s rule). Let g1(u, T ) = 0 and g2(u, T ) = 0 be (possibly empty)
plane curves over an algebraically closed field K, and assume that these zero loci
do not share a common irreducible component and that the leading u-coefficients
leadu(g1), leadu(g2) ∈ K[T ] do not have a common zero at t0 ∈ K. The resultant
RK[T ](g1, g2) vanishes at t0 to order

ordt0 RK[T ](g1, g2) =
∑
c∈K

i(c,t0)(g1, g2),

where ix(g1, g2) = dimK OA2,x/(g1, g2) is the intersection number at x.

In characteristic 0 this identity can proved by using the Puiseux series description
of finite extensions of K((T − t0)) [10, 1.2.5(f)]. In positive characteristic there is
no simple description like this, so a different method is required.

Proof. We may assume t0 = 0. Both sides of the desired identity are finite, and
each side is unaffected by switching the roles of g1 and g2. In K[[T ]][u] at least one
of g1 or g2 has a unit leading coefficient, so we may assume g1 has this property
and we wish to prove that the nonzero element RK[[T ]](g1, g2) ∈ K[[T ]] has order∑

c �(K[[u − c, T ]]/(g1, g2)) as c ranges through the finitely many common roots of
g1(u, 0) and g2(u, 0) (with g1(u, 0) �= 0). The gj ’s shall now only matter through
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their associated ideals in K[[T ]][u], so in particular it is permissible to replace each
of them with a K[[T ]]×-multiple (that may not lie in K[T ][u]).

Clearly K[[T ]][u]/(g1) is a finite flat K[[T ]]-algebra and replacing g1 with a K[[T ]]×-
multiple allows us to assume that g1 is monic in u, so by universal identities,

RK[[T ]](g1, g2) = N(K[[T ]][u]/(g1))/K[[T ]](g2 mod (g1))

in K[[T ]]. If degu g1 = 0, then g1 = 1, so the desired result is trivial in this case.
Now assume degu g1 > 0. The decomposition of K[[T ]][u]/(g1) into a finite product
of finite local K[[T ]]-algebras matches the decomposition of K[u]/(g1(u, 0)) into a
finite product of finite local K-algebras. For each root c ∈ K of the nonconstant
g1(u, 0), the image of g2 in the corresponding factor is a unit if g2(c, 0) �= 0 and is not
a unit otherwise, so the K[[T ]]-norm of g2 mod (g1) is a unit multiple of the product
of the norms of g2 with respect to the finite local K[[T ]]-algebras K[[u − c, T ]]/(g1)
as c ranges through the common roots of g1(u, 0) and g2(u, 0). It therefore suffices
to prove that for each such c,

ord(N(K[[u−c,T ]]/(g1))/K[[T ]](g2))
?= �(K[[u − c, T ]]/(g1, g2)).

We may assume c = 0. The K[[T ]]-algebra K[[u, T ]]/(g1) is finite and flat, with
g2 a regular element that is not a unit, so the right side is the Herbrand quotient
for multiplication by g2 on the K[[T ]]-module K[[u, T ]]/(g1) and the left side is the
Herbrand quotient for its determinant acting on the K[[T ]]-module K[[T ]]. Hence,
the desired equality of order and length is a special case of the general behavior of
Herbrand quotients with respect to determinants [10, Lemma A.2.6]. �

Returning to the proof of Theorem 4.5, since Zf1∩Zf2 = Zg1∩Zg2 as sets (by the
definition of hn(u) in (4.12)) it remains to improve this to an equality of schemes.
That is, we want ix(Zf1 , Zf2) = ix(Zg1 , Zg2) for all x in this common overlap. By
construction, hn(u) vanishes at ux to order exceeding ix(Zf1 , Zf2). Hence, we just
have to prove that if two curves meet properly with intersection number r > 0 at a
point x on a smooth surface S, then the intersection number at x is invariant under
any local deformation of the defining equations of the curves if the deformation is
the identity to order r. That is, if k is an algebraically closed field and {f1, f2} is a
system of parameters in k[[u, T ]] with r = �(k[[u, T ]]/(f1, f2)), then we claim that for
any ε1, ε2 ∈ (u, T )r+1 the k-finite quotient k[[u, T ]]/(f1 + ε1, f2 + ε2) has length r as
well. In fact, even the ideals (f1 + ε1, f2 + ε2) and (f1, f2) in k[[u, T ]] coincide: since
(u, T )r ⊆ I := (f1, f2) we have ε1, ε2 ∈ (u, T )I, so the elements f1 + ε1, f2 + ε2 ∈ I
are a pair of generators of I by Nakayama’s Lemma. �

Corollary 4.7. Let F be a perfect field with positive characteristic p and f(T ) ∈
F [u][T ] a nonconstant squarefree element. Let Mgeom

f be as in Definition 3.4.
1) If f lies in F [u][T p], then for deg g > 2 degu,T (f) degu,T (∂uf) the property of

f(g) being separable in F [u] is determined by g mod Mgeom
f .

2) If f(T p) is squarefree in F [u][T ], then for deg g > 2p2 degu,T (f) degu,T (∂uf)
the property of f(gp) being separable in F [u] is determined by g mod Mgeom

f .

Since f �∈ F , Lemma 3.5 assures us that ∂uf �= 0 and that f and ∂uf have no
nonconstant common factor in F [u][T ] (so Mgeom

f makes sense). For the study of
p = 2 we will need the second case in this corollary.
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Proof. If f as in the first case is written in the form f = h(T p), then Mgeom
h =

Mgeom
f because on geometric points the map (u, t) �→ (u, tp) sets up a bijection

between Zf ∩Z∂uf and Zh ∩Z∂uh. Replacing T p with T decreases the total degree
at most by a proportion 1/p, so as in the proof of Lemma 3.5 it suffices to prove
the second case.

We may apply Theorem 4.5 with f1 = f(T p) and f2 = (∂uf)(T p) to conclude
that for g with large degree as in (2), the vanishing of the resultant of f(gp) and
(∂uf)(gp) only depends on g mod Mgeom

f . Also, f(gp) is inseparable in F [u] pre-
cisely when it has a common geometric root with its derivative f(gp)′ = (∂uf)(gp).
Hence, the separability of f(gp) only depends on g mod Mgeom

f for g with large
degree as in (2). �

Before we prove Theorem 4.1, we apply it to prove a periodicity property for
µ(f(g)):

Theorem 4.8. Let κ have odd characteristic p, and let χ be the quadratic character
on κ×; define χ(0) = 0. Let f(T ) ∈ κ[u][T p] be squarefree in κ[u][T ], and assume
f �∈ κ.

There is a nonzero polynomial M = Mf,κ in κ[u] such that for g1 = c1u
n1 + · · ·

and g2 = c2u
n2 + · · · in κ[u] with sufficiently large degrees n1 and n2,

(4.13) g1 ≡ g2 mod M, n1 ≡ n2 mod 4, χ(c1) = χ(c2) =⇒ µ(f(g1)) = µ(f(g2)).

If −1 is a square in κ or degT f is even, the second congruence in (4.13) may be
relaxed to n1 ≡ n2 mod 2.

A choice for the modulus M is Mgeom
f as in Definition 3.4. Moreover, the “suf-

ficiently large” condition on n1 and n2 only depends on the total degree degu,T f
and deg M (not on #κ).

The monic modulus Mmin
f,κ of minimal degree in κ[u] for which (4.13) is true for

all large n1 and n2 is a factor of any other M . Moreover, there is a finite extension
κ′/κ such that Mmin

f,κ′′ = Mgeom
f whenever κ′′ is a finite extension of κ′.

Proof. In this proof, the importance of f(T ) being a polynomial in T p is that for
any g ∈ κ[u], the u-derivative of f(g(u)) ∈ κ[u] is (∂uf)(g(u)). In other words,
∂u(f(u, g(u))) = (∂uf)(u, g(u)) is a polynomial in g with no dependence on g′(u).

For g in κ[u] of sufficiently large degree, f(g) is nonzero and (2.5) and (3.4) yield

µ(f(g)) = (−1)dχ(disc f(g))

= (−1)dχ(lead f(g))d+deg f(g)′(χ(−1))d(d−1)/2χ(R(f(g), f(g)′)),

with d = deg f(g). Note that f(g)′ = (∂uf)(g) since f ∈ κ[u][T p]. Since f is
squarefree and f �∈ κ, so ∂uf �= 0 by Lemma 3.5, we have (∂uf)(g) �= 0 when
deg g > ν(∂uf).

When deg g ≥ degu,T f , both d = deg f(g) and deg((∂uf)(g)) are linear in deg g
by (4.4) and (4.6). Using (4.4) and (4.5) to compute deg f(g) and lead f(g) in terms
of deg g and lead g for such g, we have by Theorem 4.1 that there exist ε0, ε1 ∈ {±1}
and integers m0 and m1 such that for deg g sufficiently large (depending only on
degu,T f),

(4.14) µ(f(g)) = ε0ε
deg g
1 (χ(−1))(deg f(g))(deg f(g)−1)/2χ(lead g)m0+m1 deg gχ(L(g))
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where L is an algebraic function on the affine space κ[u]/(Mgeom
f ) over κ. This

formula depends on deg g modulo 4. If −1 is a square in κ or degT f is a multiple
of 4, then the formula (4.14) depends on deg g modulo 2.

Since any congruence class in κ[u]/(M) with M �= 0 may be represented by a
polynomial of any degree ≥ deg M with any desired leading coefficient, it is a trivial
exercise with the Chinese remainder theorem to check that for any two moduli M1

and M2 for µ(f(g)), the greatest common divisor (M1, M2) is also a modulus.
Hence, Mmin

f,κ (defined to be the monic modulus of least degree) divides all other
moduli for µ(f(g)).

Now let us establish the final part of Theorem 4.8 concerning the behavior of
Mmin

f,κ′ for sufficiently large finite extensions κ′ of κ. Let κ′/κ be a finite extension
such that all points in the finite set Zf ∩ Z∂uf ⊆ A2

κ are κ′-rational, and so in
particular Mgeom

f splits into linear factors in κ′[T ]. This rationality property is
inherited by all finite extensions of κ′. We claim that Mmin

f,κ′′ = Mgeom
f when κ′′

is any finite extension of κ′. To prove this, we can assume Mgeom
f is nonconstant

since Mmin
f,κ′′ |Mgeom

f .
Choose a monic linear factor of Mgeom

f in κ′[u], say u−ux for some (κ′-rational)
point x = (ux, tx) ∈ Zf ∩Z∂uf . We can find polynomials g1 and g2 in κ′[u] with any
large degree n and a common leading coefficient such that g1(ux) = tx �= g2(ux)
and g1(ux′) = g2(ux′) �= tx′ for all x′ ∈ Zf ∩ Z∂uf with x′ �= x. By (4.11) and
the positivity of the intersection numbers in the exponents, for sufficiently large n
the resultant of f(g1) and (∂uf)(g1) = f(g1)′ vanishes and the resultant of f(g2)
and f(g2)′ is nonzero; that is, µκ′[u](f(g1)) = 0 and µκ′[u](f(g2)) �= 0. The same
properties persist after replacing κ′ with any finite extension κ′′. Since g1 and g2 are
clearly congruent modulo Mgeom

f /(u− ux), we conclude that this divisor of Mgeom
f

cannot be a modulus for µκ′′[u](f(g)) and so cannot be divisible by Mmin
f,κ′′ . Thus,

Mmin
f,κ′′ = Mgeom

f . �

Example 4.9. Since Mmin
f,κ |Mgeom

f , there are only finitely many possibilities for
Mmin

f,κ′ as κ′ varies over finite extensions of κ. We now give an example where
Mmin

f,κ �= Mgeom
f .

Let f(T ) = T 12 + (2u4 + u3 + u2 + 2)T 6 + 2u3 + 1 in κ[u][T ], where κ has
characteristic 3. For nonconstant g in κ[u], the proof of Theorem 4.8 gives

µ(f(g)) = χ(g(0)2 + 1)2χ(g(1))χ(R(u2 + 1, f(g))).

Note that χ(g(0)2+1)2 is not always 1 because it may vanish. Since R(u2 +1, f(g))
only depends on g mod u2 + 1 (by quasi-periodicity of resultants), µ(f(g)) only
depends on g mod u(u − 1)(u2 + 1). (Since Rκ[u](f, ∂uf) = u12(u − 1)18(u2 + 1)12,
we have Mgeom

f = u(u − 1)(u2 + 1).) If [κ : F3] is odd then g(0)2 + 1 is nonzero,
so µ(f(g)) only depends on g modulo (u − 1)(u2 + 1) for such κ; hence, Mmin

f,κ =
(u − 1)(u2 + 1) �= Mgeom

f .

As preparation for the proof of Theorem 4.1, which uses an algebraic method that
rests on variation in the ordered pair (f1, f2), we need to establish an alternative
formulation of the result. Fix a nonzero M ∈ F [u]. Choose

n0 > 2 degu,T f1 · degu,T f2
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such that n0 ≥ deg(lcm(M, Mgeom
f1,f2

)) and (in case some fj is in F×) n0 > max(ν(f1),
ν(f2)) (see (4.6)). Consider the claim that there exist c ∈ F×, integers m0 and m1,
and an algebraic function Lf1,f2 : F [u]/(M) → A1

F such that for n ≥ n0 there is
an equality of algebraic functions

(4.15) Rn(G) = cnam0+m1n
n · (Lf1,f2 ◦ ρn,M )

on Polyn/F , with ρn,M as in (4.1) or (4.2). The key point is that a formula as in
(4.15) holds for some such M and all n ≥ n0 if and only if en is a Z-polynomial of
degree ≤ 1 in such n and bn = β0β

n
1 for some β0, β1 ∈ F× for such n (with en and

bn as in Theorem 4.5). Sufficiency is obvious by Theorem 4.5, and for necessity
we may replace M with lcm(M, Mgeom

f1,f2
) to get to the case where Mgeom

f1,f2
|M and

n0 ≥ deg M , so we have formulas

Rn(G) = bnaen
n

∏
x

P
ix(Zf1 ,Zf2 )

x,deg M−1 ◦ ρn,M

and
Rn(G) = cnam0+m1n

n · Lf1,f2 ◦ ρn,M

as rational functions on Polyn/F for all n ≥ n0. Thus, the rational function

g �→ bnc−nan(g)en−(m0+m1n)

on Polyn/F factors through ρn,M , or equivalently for generic (or universal) g it only
depends on g mod M . This forces en = m0 + m1n for all such n, so

bnc−n
∏
x

P
ix(Zf1 ,Zf2 )

x,deg M−1 ◦ ρn,M = Lf1,f2 ◦ ρn,M

for all such n. Hence,
bnc−n

∏
x

P
ix(Zf1 ,Zf2 )

x,deg M−1 = Lf1,f2

on Poly≤(deg M−1)/F . Since Lf1,f2 and the Px,deg M−1’s do not depend on n, we
conclude that bnc−n ∈ F× is equal to a constant c′ that does not depend on our
large n. Thus, bn = c′cn for c, c′ ∈ F× and all n ≥ n0; this is the desired result.

We shall now aim to prove an identity of the form (4.15) for large n (without
making the lower bound on n explicit) by means of induction on the ordered pair
(f1, f2). The flexibility in the choice of M will be essential for the success of the
induction. For example, the preceding argument shows that if this goal is satisfied
for a particular pair (f1, f2), then upon replacing M with a nonzero multiple so
that it is divisible by Mgeom

f1,f2
we must have

Lf1,f2 = c0

∏
x

P
ix(Zf1 ,Zf2 )

x,deg M−1

for some c0 ∈ F×. In what follows we will (for expository simplicity) work with a
generic field-valued point g of the geometrically integral F -variety Polyn/F for large
n, though one can instead work throughout in the universal case with g having a
unit leading coefficient and large degree n.

Remark 4.10. Since deg Mgeom
f1,f2

≤
∑

x ix(Zf1 , Zf2) ≤ (degu,T f1)(degu,T f2), the
interested reader may easily check that the inductive argument below determines an
n0 = n0(degu,T f1, degu,T f2) so that (4.15) with M = Mgeom

f1,f2
holds for all n ≥ n0.

The main point is that the number of steps in the recursive procedure is bounded
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above in terms of degu,T f1 and degu,T f2. We have not attempted to make such
an n0 explicit.

Note that although R(f1(g), f2(g)) generally depends on the ordering of f1 and
f2, the existence of an identity as in (4.15) does not depend on this ordering. Indeed,
for generic g of any sufficiently large degree (such as deg g > max(ν(f1), ν(f2)) with
notation as in (4.6)),

R(f1(g), f2(g)) = (−1)(deg f1(g))(deg f2(g))R(f2(g), f1(g))

= (−1)e0(−1)e1 deg gR(f2(g), f1(g)),

where e0 = (deg α1,d1)(deg α2,d2) and e1 = d1 deg α2,d2 + d2 deg α1,d1 + d1d2, with
dj = degT fj and fj =

∑
αj,iT

i. Thus, we need not be concerned with sign-changes
in resultants when f1 and f2 are interchanged. We will use this repeatedly.

Our proof of Theorem 4.1 will roughly be a series of identities

R(f1(g), f2(g)) = c0c
deg g
1 (lead g)µ0+µ1 deg gR(f3(g), f4(g))

for generic g of large positive degree (or universal g with a unit leading coefficient
and large degree), where the elements c0, c1 ∈ F× and µ0, µ1 ∈ Z depend on
the ordered pair (f1, f2), and the ordered pair (f3, f4) of nonzero relatively prime
polynomials in F [u][T ] is in some sense smaller than (f1, f2). (There is more than
one sense of “smaller” that we use, depending on the stage of our argument.) In this
way, induction and the reformulation via (4.15) will establish Theorem 4.1, provided
that along the way we also prove that m1 in (4.15) is equal to (degT f1) · (degT f2).

To get started, the case when f1(T ) has T -degree 0, say f1(T ) = a(u) ∈ F [u], is
trivial: writing a(u) = ca1(u) with c ∈ F× and a1(u) monic,

(4.16) R(a(u), f2(g)) = R(c, f2(g))R(a1(u), f2(g)) = cdeg f2(g)R(a1(u), f2(g)).

For generic g with degree exceeding ν(f2), cdeg f2(g) = c0c
deg g
1 for suitable c0 and c1

in F× that are independent of g. The factor R(a1(u), f2(g)) is an algebraic function
of g modulo a1(u), since a1(u) is monic. This proves (4.15) in the present case for
large n (with m1 = 0), and so proves Theorem 4.1 when some degT fj vanishes.

To prove Theorem 4.1 in general, we can assume that the coefficients of f1 as a
polynomial in T have no common factor in F [u], and similarly for f2. Indeed, if
f1(T ) = a(u)h(T ) for a(u) in F [u] (so f2 is relatively prime to both a(u) and h(T )
in F [u][T ]), then

(4.17) R(f1(g), f2(g)) = R(a(u), f2(g))R(h(g), f2(g)),

with the first factor on the right side satisfying the induction hypothesis by the
preceding discussion. Removing a common factor from the coefficients of f2 as a
polynomial in T goes the same way.

We will prove Theorem 4.1 (in the guise of (4.15)) by two inductions: on the
maximum of degT f1 and degT f2 when these degrees are distinct, and for f1 and
f2 of equal T -degree we will induct on the minimum u-degree of their leading
coefficients as polynomials in T .

Lemma 4.11. Let h1(T ) and h2(T ) in F [u][T ] have common T -degree d ≥ 1:

h1(T ) = α(u)T d + · · · , h2(T ) = β(u)T d + · · · .

Assume α � β and β � α (so α, β �∈ F ). Then there exist c ∈ F×, ε = ±1, m ∈ Z,
and a second pair of polynomials h̃1(T ) and h̃2(T ) in F [u][T ] with T -degree d whose
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leading coefficients as polynomials in T , α̃(u) and β̃(u), satisfy

(4.18) min(deg α̃, deg β̃) < min(deg α, deg β)

such that for all extensions F ′/F and all g in F ′[u] with sufficiently large degree
(depending only on d and the u-degrees of the monomials appearing in the hj’s) we
have

(4.19) R(h1(g), h2(g)) = cεdeg g(lead g)mR(h̃1(g), h̃2(g)).

If the hj’s are relatively prime in F [u][T ] then the h̃j’s must be relatively prime in
F [u][T ].

Proof. We will prove the lemma when deg α ≤ deg β. (When deg α > deg β, we
can reduce to the other case by interchanging h1 and h2, at the cost of changing c
and ε in the conclusion.) In F [u], write β(u) = α(u)q(u) + r(u), where r �= 0 and
deg r < deg α. Since r �= 0, k(T ) := h2(T )−q(u)h1(T ) has leading term r(u)T d as a
polynomial in T with coefficients in F [u]. For all g, clearly h2(g) ≡ k(g) mod h1(g).
When deg g is at least as large as ν(h1), ν(h2), and ν(k) (notation as in (4.6)),
quasi-periodicity gives

R(h1(g), h2(g)) = (leadh1(g))deg h2(g)−deg k(g)R(h1(g), k(g))
= c(lead g)mR(h1(g), k(g)),

where c = (leadα)deg β−deg r and m = d(deg β − deg r). Let h̃1 = h1 and h̃2 = k,
or h̃1 = k and h̃2 = h1. By Lemma 4.2, the identity (4.19) forces relative primality
of the h̃j ’s when the hj ’s are relatively prime. �

Now we modify the hypothesis in the previous lemma. Rather than assuming
that the leading T -coefficients of h1(T ) and h2(T ) do not divide each other, we
assume h1(T ) and h2(T ) are relatively prime.

Lemma 4.12. Let h1(T ) and h2(T ) in F [u][T ] have common T -degree d ≥ 1:

h1(T ) = α(u)T d + · · · , h2(T ) = β(u)T d + · · · .

Assume the hj’s are relatively prime in F [u][T ]. There exist c ∈ F×, ε = ±1,
m ∈ Z, and a second pair of nonzero relatively prime polynomials h̃1(T ) and
h̃2(T ) in F [u][T ] with degT h̃1 < degT h̃2 = d such that for all extensions F ′/F
and all g in F ′[u] with sufficiently large degree (depending only on d and the
u-degrees of the monomials appearing in the hj’s), we have R(h1(g), h2(g)) =
cεdeg g(lead g)m+m1 deg(g)R(h̃1(g), h̃2(g)) with m1 = d(d − degT h̃1).

Proof. If neither α nor β divides the other in F [u], apply Lemma 4.11 to get a second
pair of polynomials in F [u][T ] with T -degree d. Repeat this process if again neither
leading coefficient as a polynomial in T divides the other. (Note that terms such as
cεdeg g(lead g)m behave well under multiplication: the c’s and ε’s are multiplicative
and the m’s are additive.) The condition (4.18) ensures that we eventually reach
the case where α(u)|β(u) or β(u)|α(u). Thus, we may interchange h1 and h2 if
necessary to suppose α(u)|β(u). Write β(u) = α(u)q(u). The polynomial k(T ) :=
h2(T ) − q(u)h1(T ) has T -degree less than d. This polynomial is nonzero and is
relatively prime to h1 since (h1, h2) = 1. Proceed as in the proof of Lemma 4.11,
taking h̃1 = k and h̃2 = h1. �
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We are now ready to prove Theorem 4.1:

Proof of Theorem 4.1. We argue via (4.15) by induction on max(degT f1, degT f2),
and we refer the reader to Remark 4.10. Set d1 = degT f1 and d2 = degT f2. We
can assume both d1 and d2 are positive, since the cases d1 = 0 or d2 = 0 have been
settled via (4.16). Remove any nontrivial common factor from the F [u]-coefficients
of f1(T ) as a polynomial in T , using (4.17), so f1(T ) is primitive over F [u]. Similarly
make f2 primitive. By Lemma 4.12 and induction, we may assume d1 �= d2, and
without loss of generality 0 < d1 < d2. Writing

(4.20) f1(T ) = α(u)T d1 + . . . , f2(T ) = β(u)T d2 + . . . ,

we wish to reduce to the case deg β < deg α (at the expense of possibly losing the
primitivity condition for f2 but not for f1).

Write β(u) = α(u)q(u) + r(u), where r = 0 or deg r < deg α. The polynomial
k(T ) = f2(T ) − q(u)T d2−d1f1(T ) is nonzero and relatively prime to f1. If r is
nonzero then k(T ) has leading term r(u)T d2 . If r = 0 then degT k < d2. In
either case, f2(g) ≡ k(g) mod f1(g) for all field-valued points g of Polyn/F . When
n = deg g is sufficiently large,

R(f1(g), f2(g)) = (lead f1(g))deg f2(g)−deg k(g)R(f1(g), k(g)).

The power of lead f1(g) has the form c0c
deg g
1 (lead g)m0+m1 deg g for suitable c0, c1 ∈

F× and m0, m1 ∈ Z that do not depend on g, with m1 = d1(d2 − degT k), so we
are now reduced to proving (4.15) with f2 replaced by k.

Either degT k = d2 and the leading coefficient of k as a polynomial in T has
smaller degree than deg α, or degT k < d2. In the latter case we have max(degT f1,
degT k) < d2, so (4.15) (and hence Theorem 4.1) with f1 and k has already been
proved by the induction hypothesis. Thus, it remains to treat the case (4.20) with
deg β < deg α; observe that this reduction step preserves primitivity for f1 but
possibly loses it for f2.

Our resultant now looks like R(f1(g), f2(g)) = R(α(u)gd1 + · · · , β(u)gd2 + · · · ).
Since d1 < d2, it is natural to want to reduce f2(g) modulo f1(g) and use quasi-
periodicity, hoping to lower the maximum T -degree of the pair f1, f2 in our resul-
tants. However, deg β < deg α, so there is no progress through a division algorithm
on the leading coefficients as in the proof of Lemma 4.11. To circumvent this prob-
lem, we shall use a trick that puts us in the case in which α|β: consider the universal
identity

(4.21) R(f1(g), α(u))R(f1(g), f2(g)) = R(f1(g), α(u)f2(g))

with g the universal polynomial of large degree n with a unit leading coefficient. The
first term in (4.21) is nonzero, since primitivity of f1 forces (f1(g), α(u)) = 1. Since
all three resultants admit expressions as in Theorem 4.5 for a common modulus M ,
if (4.15) is proved for two of the three pairs (f1, α), (f1, f2), and (f1, αf2) in (4.21)
then it follows for the third. Since the case of a polynomial of T -degree zero has
already been settled, it suffices to treat the ordered pair (f1, α(u)f2).

The right side of (4.21) has the form R(α(u)gd1 + · · · , α(u)β(u)gd2 + · · · ). Let
h(T ) = α(u)f2(T ) − β(u)f1(T )T d2−d1 . Since (f1, f2) = 1 and f1 is primitive over
F [u], and we may assume degT f1 > 0, it follows that h is nonzero and satisfies
degT h < d2 and (f1, h) = 1. Since h(g) ≡ α(u)f2(g) mod f1(g) for all g, when
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deg g 
 0 the right side of (4.21) is

R(f1(g), α(u)f2(g)) = (lead f1(g))deg α+deg f2(g)−deg h(g)R(f1(g), h(g))

= c0c
deg g
1 (lead g)m0+m1 deg gR(f1(g), h(g))

for suitable c0, c1 ∈ F× and m0, m1 ∈ Z. Explicitly, m1 = d1(d2 − degT h). Since
degT f1 and degT h are both less than d2, the theorem holds for the pair (f1, h) by
induction on the maximum T -degree. We may now infer the desired result for the
pair (f1, αf2). �

Example 4.13. For f as in Lemma 3.5 with f �∈ F , the pair f1 = f and f2 = ∂uf
satisfies the hypotheses in Theorem 4.1. A local calculation shows that in this case
B = Zf1 ∩ Zf2 is the non-étale locus for projection from {f = 0} to the T -axis,
and ix(Zf1 , Zf2) is the length of B at x. As an illustration (via Example 3.2), for
f as in Example 1.1 the projection from the plane curve {f = 0} to the T -axis is
non-étale at precisely the geometric points (0, 0) and (1, t) with t2 + 1 = 0, and the
branch scheme has respective lengths 18 and 9 at these points. Theorems 4.1 and
4.5 thereby explain why µ(f(g)) has the form given in (3.6); note the appearance
of g(0)18(g(1)2 + 1)9 in the discriminant formula immediately following (3.6).

Corollary 4.14. Let F be a perfect field of characteristic p > 0 and let f1 and f2 be
nonzero and relatively prime in F [u][T ]. Assume, for some m ≥ 0, fj = hj(u, T pm

)
for j = 1 and 2. For each x ∈ Zf1 ∩ Zf2 , the multiplicity of Px,n as a factor of
the algebraic function g �→ R(f1(g), f2(g)) on Polyn/F for sufficiently large n as in
Theorem 4.5 is equal to pm · i(1×φm)(x)(Zh1 , Zh2), with φ the relative Frobenius on
the T -line over F .

Proof. We just have to prove ix(Zf1 , Zf2) = pm · i(1×φm)(x)(Zh1 , Zh2). As a radicial
self-map of the affine plane, 1 × φm is finite flat with degree pm and it identifies
Zf1 ∩ Zf2 with the fiber over Zh1 ∩ Zh2 . Thus, it multiplies lengths by pm since F
is perfect. �

Corollary 4.14 is useful in the study of variation of Möbius periodicity as we vary
f :

Example 4.15. Consider the algebraic family of polynomials
∑n

i=0 αi(u)T ei with
a fixed strictly increasing sequence of nonnegative integers {ei} and varying αi(u)’s
with specified degrees di ≥ 0 such that di > 0 for some i. We are interested in
the case when p � ei0 for some i0, but we do not impose such a condition yet.
Fix m ≥ 0. Denoting a polynomial in our algebraic family as h, is the branch
scheme nonempty for projection from h(T pm

) = 0 to the T -axis for generic h in the
family when p �= 2? The generic existence of branch points amounts to the generic
resultant R(h, ∂uh) of h and ∂uh as polynomials in T having positive u-degree. In
the special case that di ≤ 1 for all i, the generic resultant is nonzero with u-degree
0 and hence there are no branch points for generic h. In all other cases there are
branch points for generic h, as we now explain.

Assume di1 ≥ 2 for some i1. As we have noted, the generic existence of branch
points amounts to the resultant R(h, ∂uh) of h and ∂uh (as polynomials in T )
having positive u-degree for generic αi with degree di. If deg αi = 0 for all i > 0
(so deg α0 ≥ 2), then the resultant is α′

0(u)degT h, and this has positive degree in
the generic case since p > 2. Suppose instead that deg αi > 0 for some i > 0, so
d := degT ∂uh is positive. Choose any i1 with di1 ≥ 2, so α′

i1
has positive degree
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in the generic case (as p �= 2). Let c = leadu(α′
i1

) in the generic case. Consider
the expansion of the universal determinant that defines the u-polynomial R(h, ∂uh)
(over the ring of generic coefficients of the αi’s). Since the generic constant term of
each αj does not appear in ∂uf , this expansion involves exactly one appearance of

cdegT hαn(0)rα0(0)sudegT h·degu(α′
i1

)

with r, s ≥ 0 and r maximal (r = 0 in case i1 = n). Hence, this term with positive
u-degree does not cancel out.

If some ei0 is not divisible by p and di1 ≥ 2 for some i1, then when p �= 2 the
projection from Zh to the T -axis has an étale point on its branch scheme for generic
h; this is proved via deformation theory and Bertini theorems in [9] (with the u-line
replaced by an arbitrary smooth affine curve over κ with one geometric point at
infinity). Thus, except for the cases when di ≤ 1 for all i, if p �= 2 then the branch
scheme of projection to the T -axis from the zero-scheme of a generic member of
any algebraic family {

∑
αiT

µi | deg αi = di} as above has a point with odd (and
even p-power) length when p|µi for all i, due to Corollary 4.14.

5. Characteristic 2

The analogue of Theorem 4.8 in characteristic 2 is subtle because (2.5) in charac-
teristic 2 requires liftings into characteristic 0. When κ has characteristic 2, ideally
we want a result about the periodicity of µ(f(g)) for squarefree f ∈ κ[u][T 2]. We
will be able to prove something about µ(f(g)) when f is a polynomial in T 2 (The-
orem 5.10), but not periodicity: Möbius formulas in particular examples (even the
polynomial T 2 + u, as in [7]) do not seem to satisfy simple periodicity properties.
However, we shall prove (Theorem 5.12) that squarefree polynomials in T 4 have
periodic Möbius values.

In odd characteristic, a modulus of Möbius periodicity for a squarefree polyno-
mial f(T ) is given by a geometrically constructed polynomial Mgeom

f as in Defini-
tion 3.4. In characteristic 2 we have to use a slightly different procedure, as follows.
Writing f(T ) = h(T 2), h(T ) is squarefree since f(T ) is, and f(T ) has no local
obstructions if and only if h(T ) has none. The relevant “modulus” for g �→ µ(f(g))
will turn out to be not Mgeom

f , but a polynomial closely related to Mgeom
h (and in

some examples it does not seem that there is a squarefree modulus, as can always be
found in odd characteristic). The work we carry out in characteristic 2 will involve
an interplay between resultants in characteristic 2 and in characteristic 0. For the
application to finite fields κ, we will need to work in the Witt vectors of κ. Since
finiteness of the field won’t matter until we reach the application to Möbius values,
our work on resultants will be carried out over any perfect field k of characteristic
2 and over its Witt vector ring W = W (k).

Hypothesis. Our running convention throughout §5 is that k is a perfect field
with characteristic 2 and h is a polynomial in k[u][T ] such that h �∈ k and h(T 2)
is squarefree in k[u][T ]. If k is finite then we also assume that h(T ) has no local
obstructions; that is, h(T ) is nonzero as a function on the finite fields k[u]/(π) for
all π.

Our hypotheses force h to be squarefree in k[u][T ] and not to have any prime
factors in k[T ] (otherwise h(T 2) has a factor in k[T 2] = k[T ]2 since k is perfect),
and also force h(g2) �= 0 for all g ∈ k[u]. Since h �∈ k, Lemma 3.5(2) ensures that
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∂uh �= 0 and that h and ∂uh are relatively prime in k[u][T ]. Thus, Rk[u](h, ∂uh) �= 0
and we may define Mgeom

h as in Definition 3.4. Corollary 4.7(2) ensures that whether
or not h(g2) is separable in k[u] only depends on g mod Mgeom

h , provided deg g is
sufficiently large. This largeness only depends on the total degree of h.

Let us check that our hypotheses on h ensure that for any sufficiently large d there
exists g ∈ k[u] with degree d such that h(g2) is nonconstant and separable in k[u].
Since h(T 2) is squarefree in k[u][T ] and h �∈ k, for infinite k the existence of such a g
in any degree exceeding max(ν(h), ν(∂uh)) (see (4.6)) follows from Lemma 4.2 and
the Zariski-denseness of the locus of k-rational points in any affine space over k. In
the case of finite k, we use the additional hypothesis (for such k) that h has no local
obstructions, as then the existence of such a g in any large degree is ensured by [14,
Thm. 3.4] (where the hypothesis of no local obstructions is replaced by the weaker
assumption that h(T 2) is nonzero as a function on k[u]/(π2) for all prime π ∈ k[u]).
The condition that h(g2) is separable is a congruence condition on g mod Mgeom

h .
Since deg Mgeom

h is bounded in terms of degu,T h, it follows that we may find such a
g with any desired degree exceeding a lower bound determined by degu,T h (and not
depending on k). Taking this universal bound large enough forces deg h(g2) > 0,
so (∂uh)(g2) = h(g2)′ is nonzero and Rk(h(g2), h(g2)′) is nonzero.

Let H be a lift of h to W [u][T ] = W (k)[u][T ] such that degT H = degT h and
leadT (H) ∈ W [u] has the same u-degree as leadT (h) ∈ k[u], so leadT (H) ∈ W [u] has
unit leading coefficient and reduces to leadT (h) ∈ k[u]. We also require degu,T H =
degu,T h; this condition on the total degrees can certainly be satisfied, and its only
purpose is to ensure that various largeness conditions below only depend on degu,T h
and not on H.

Let G ∈ W [u] be a lift of g with unit leading coefficient (so deg G = deg g). As-
sume deg g is sufficiently large so that the degree of h(g2) ∈ k[u] is given by a generic
formula as in (4.4), and likewise for the degree of H(G2); this condition on deg g
only depends on degu,T h (since degu,T H = degu,T h). Note that H(G2) ∈ W [u]
has unit leading coefficient (and hence the same degree as h(g2)), so W [u]/(H(G2))
is a finite flat W -algebra that lifts the finite étale k-algebra k[u]/(h(g2)). Keep-
ing in mind (2.5) for applications to finite k, we want to understand how the unit
discriminant discW (H(G2)) mod 8W depends on G.

Let F denote the fraction field of W = W (k). Since leadT H ∈ W [u] has leading
coefficient in W× and h = H mod 2 ∈ k[u][T ] is not in k and has no prime factors
in k[T ] (as h(T 2) is squarefree), we conclude that H is not in W and that H has
no prime factors in W [T ]. Moreover, since h is squarefree in k[u][T ] we see that its
lift H is squarefree in W [u][T ]. The same therefore holds using F -coefficients, so
∂uH �= 0. The zero loci ZH = {H = 0} and Z∂uH = {∂uH = 0} in A2

F have finite
intersection by:

Lemma 5.1. If K is perfect with arbitrary characteristic and f ∈ K[u][T ] is not
in K, then the zero loci of f and ∂uf in A2

K have finite intersection if and only if
the following three conditions hold: f is squarefree in K[u][T ], f has no irreducible
factors in K[T ], and the projection

prT : Zf = SpecK[u][T ]/(f) → SpecK[T ] = A1
K

to the T -axis is generically étale on Zf . When this happens, the non-étale locus of
prT is finite and its image in the u-axis is the zero locus of Mgeom

f in A1
K , with

Mgeom
f as in Definition 3.4.
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The generically-étale property is always satisfied for squarefree nonzero f ∈
K[u][T ] in characteristic 0 since prT is a priori quasi-finite and flat. The case of
2-adic fields is of most interest for our present purposes.

Proof. The necessity of the conditions that f be squarefree and have no irreducible
factors in K[T ] is clear. Granting these conditions, the plane curve Zf is reduced
(hence geometrically reduced since K is perfect) and its projection to the T -axis is
quasi-finite and hence flat. Thus, the property of prT being étale at a point of Zf

may be checked on the geometric fibers of prT . Extending scalars to an algebraic
closure of K, we thereby see that the non-étale locus for prT is where Zf meets
Z∂uf in A2

K . This completes the proof of the desired equivalence and also yields
the asserted relationship between Mgeom

f and the non-étale locus of prT . �

We conclude that RW [u](H, ∂uH) ∈ W [u] is nonzero and that the monic square-
free polynomial Mgeom

H ∈ F [u] can be formed as in Definition 3.4. The geometric
roots of Mgeom

H are the u-coordinates of the intersection points of ZH and Z∂uH

in A2
F . Since degu,T H = degu,T h, the degree of Mgeom

H is bounded in terms of
degu,T h (by Bézout’s theorem over F ).

Though H(G2)′ �= (∂uH)(G2) in characteristic 0, the mod-2 reductions agree.
Thus, the F -resultants

(5.1) RF (H(G2), H(G2)′), RF (H(G2), (∂uH)(G2))

lie in W and have reductions in k that are both zero or both nonzero (see (3.2)
and the Warning above (3.3)). Both reductions therefore lie in k× since h(g2)
is separable, so both terms in (5.1) lie in W×. When k is finite, the quadratic
character of the first resultant in (5.1) is related to discW (H(G2)) and intervenes in
the study of µ(h(g2)) (see (2.5)). The second resultant in (5.1), for finite k, is one
to which Theorem 4.1 may be applied over the field F of characteristic zero since
ZH ∩ Z∂uH ⊆ A2

F is finite. We are going to show that the ratio of the resultants
in (5.1), which is in W×, can be made explicit in (W/8W )× modulo unit-square
factors, so we will be able to use Theorem 4.1 to study the quadratic character of
discW (H(G2)). (A lot of algebraic calculations are coming up; a special case where
the main ideas can be seen without complications is in [7].)

The leading coefficient of H(G2) is a unit and the reduction h(g2) is separable,
so the roots of H(G2) in an algebraic closure F are integral, lie in an unramified
extension of F , and have pairwise-distinct reductions. Let {α} be the (nonempty)
set of roots of H(G2) in F and let α denote the reduction of each such root α, so
(∂uh)(g2)(α) = (h(g2))′(α) is nonzero and hence (∂uH)(G2)(α) is an integral unit
for all such α.

Since H(G2)′ = (∂uH)(G2) + 2(∂T H)(G2)GG′, the classical formula (3.1) for
resultants in terms of products over geometric roots gives

(5.2)
RF (H(G2), H(G2)′)

RF (H(G2), (∂uH)(G2))
= lead(H(G2))dG

∏
α

(
1 + 2 · (∂T H)(G2)GG′

(∂uH)(G2)

∣∣∣∣
α

)
,

where dG := deg(H(G2)′) − deg((∂uH)(G2)).

Remark 5.2. For deg g large, dG = 0 if leadT H ∈ W [u] is nonconstant (or equiv-
alently, if leadT h ∈ k[u] is nonconstant). If leadT H ∈ W×, then for deg g large we
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have

dG = 2 degT h deg g − 1 − deg(leadT ∂uH) − 2(degT ∂uH) deg G

= 2(degT h − degT ∂uH) deg g − (1 + deg(leadT ∂uH)).

In either case, the largeness condition on deg g is determined by degu,T h.

We want to understand the product in (5.2) modulo 8W . The remarkable sur-
prise is that there is a very simple formula for this product mod 8W (see (5.5)),
and the formula only depends on g and h (not on G or H). We need to make two
definitions before we can state the formula of interest.

Definition 5.3. For any perfect field K and any rational differential form ω on
P1

K , set

(5.3) s2(ω) :=
∑

{y1,y2}
Resy1ω · Resy2ω ∈ K,

where the sum runs over unordered pairs of distinct geometric poles of ω on P1
K .

Our interest in s2(ω) will be restricted largely to cases when ω has at worst
simple poles. For ω varying with only simple poles, s2(ω) is not algebraic in ω
if we do not fix the number of simple geometric poles of ω. For example, if ω =
b · du/u + du/(u − a) with b �= 0,−1, then s2(ω) = −b(b + 1) − 1 if a �= 0 and
s2(ω) = −(b + 1)2 if a = 0.

Definition 5.4. For g ∈ k[u], define ωh,g = ((∂T h)(g2)g/h(g2))dg; the initial
hypotheses on h ∈ k[u][T ] in this section ensure that h(g2) �= 0.

When g is a square in k[u] or h is a polynomial in T 2, ωh,g vanishes. For g ∈ k[u]
with large degree such that h(g2) is separable, the equation

(5.4) ωh,g =
(∂T h)(g2)g2

h(g2)
· dg

g

shows that this rational differential form on P1
k has simple poles. We will see in

Theorem 5.10 that s2(ωh,g) intervenes in the behavior of µ(h(g2)) when k is finite.
For finite k, the vanishing of s2(ωh,g2) will therefore make the behavior of µ(h(g4))
very accessible; this is µ(f(g)) when f is a polynomial in T 4.

Theorem 5.5. Choose H ∈ W [u][T ] reducing to h ∈ k[u][T ] such that leadT (H) ∈
W [u] has unit leading coefficient in W and degu,T H = degu,T h. For g ∈ k[u] of
large degree with h(g2) separable and G ∈ W [u] lifting g with lead(G) ∈ W×, the
product in (5.2) satisfies

(5.5)
∏
α

(
1 + 2 · (∂T H)(G2)GG′

(∂uH)(G2)

∣∣∣∣
u=α

)
≡ 1+2 deg g degT h+4s2(ωh,g) mod 8W,

where α runs over the geometric roots of H(G2). The largeness of deg g only de-
pends on degu,T h and not on H or k.

Proof. Let P = H(G2). Since P has simple zeros at each of its roots α, and hence
serves as a local coordinate there, we get the residue description

(5.6)
(∂T H)(G2)GG′

(∂uH)(G2)

∣∣∣∣
u=α

= Resα

(
(∂T H)(G2)GG′

(∂uH)(G2)
· dP

P

)
.
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We will first show that

(5.7) 2
(∂T H)(G2)GG′

(∂uH)(G2)

∣∣∣∣
u=α

≡ 2ResαωH,G + 4(ResαωH,G)2 mod 8W,

where W is the integral closure of W in an algebraic closure F of F and we define
ωH,G by the formula (5.4) with H and G replacing h and g respectively. Note that
we can replace the second residue in (5.7) with a residue in characteristic 2, namely
Resα(ωh,g) with α the reduction of α.

Since (H(G2))′ ≡ (∂uH)(G2) mod 2W [u] with H(G2)′(α) ∈ W
×

, we have

Resα

(
((∂T H)(G2)GG′)2

(∂uH)(G2)H(G2)
du

)
≡ Resα

(
(∂T H)(G2)GG′

(∂uH)(G2)

)2 dH(G2)
H(G2)

mod 2W.

However, using P = H(G2),

(∂T H)(G2)GG′

(∂uH)(G2)
· dP

P
=

(∂T H)(G2)GG′((∂uH)(G2) + 2(∂T H)(G2)GG′)
(∂uH)(G2)H(G2)

du

=
(∂T H)(G2)G

H(G2)
dG + 2

((∂T H)(G2)(GG′))2

(∂uH)(G2)H(G2)
du,

so by (5.6) we conclude that in W/8W

2
(∂T H)(G2)GG′

(∂uH)(G2)

∣∣∣∣
u=α

= 2Resα

(
(∂T H)(G2)G

H(G2)
dG

)
+ 4Resα

((
(∂T H)(G2)GG′

(∂uH)(G2)

)2 dP

P

)
.

The first residue on the right side is Resα(ωH,G). The second residue only matters
modulo 2. Reducing it modulo 2 gives the square of the residue at α of

(∂T h)(g2)gg′

(∂uh)(g2)
· d(h(g2))

h(g2)
=

(∂T h)(g2)g2

h(g2)
· dg

g
= ωh,g

since Resx(spdr/r) = Resx(sdr/r)p in characteristic p > 0. This establishes (5.7).
Using (5.7), expanding the product on the left side of (5.5) modulo 8 gives the

element
(5.8)

1 + 2
∑
α

ResαωH,G + 4
∑

α1 �=α2

Resα1ωh,gResα2ωh,g + 4
∑
α

Resα(ωh,g)2 ∈ W/8W,

where α1 and α2 in the second sum run over unordered pairs of distinct F -roots of
H(G2). By the residue theorem in characteristic 0, the first sum over the zeros α
of H(G2) in (5.8) is equal to

−Res∞

(
(∂T H)(G2)G2

H(G2)
· dG

G

)
= deg G degT H = deg g degT h

since (∂T H)(G2)G2 and H(G2) have the same degree and have leading coefficients
with ratio degT H.

The final sum in (5.8) lies in k, where it equals(∑
α

Resα(ωh,g)

)2

= Res∞(ωh,g)2 = Res∞(ωh,g) ·
∑
α

Resα(ωh,g)
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by the residue theorem in characteristic 2. The second and third sums in (5.8)
therefore combine to give 4s2(ωh,g) in (5.5). �

By (3.4), (5.2), and Theorem 5.5, if deg g is sufficiently large (in a manner
determined by degu,T h) and h(g2) is separable then the discriminant discW (H(G2))
is congruent modulo 8W to
(5.9)

(−1)δg(δg−1)/2

(lead H(G2))2δg−1−dG
RW (H(G2), (∂uH)(G2))(1 + 2 deg g degT h + 4s2(ωh,g)),

where
δg = deg(h(g2)) = 2 deg g degT h + deg(leadT h)

and dG is given by Remark 5.2; the exponent 2δg − 1 − dG of lead H(G2) in (5.9)
is linear in deg g = deg G when deg g is large (depending only on degu,T h). Since
−4 ≡ 4 mod 8, discW (H(G2)) mod 8W is equal to

RW (H(G2), (∂uH)(G2))
(leadH(G2))2δg−1−dG

((−1)δg(δg−1)/2(1 + 2 deg g degT h) + 4s2(ωh,g)).

Write δg = 2ab + c, with a = deg g, b = degT h, and c = deg(leadT h), so

δg(δg − 1)
2

≡ ab +
c(c − 1)

2
mod 2

and (by checking cases for ab modulo 4)

(−1)ab+c(c−1)/2(1 + 2ab) ≡ (−1)c(c−1)/2

(
1 + 4

⌊
1 + ab

2

⌋)
mod 8,

where �·� denotes the greatest-integer function. Thus, separability of h(g2) implies
that discW (H(G2)) mod 8W is equal to
(5.10)

RW (H(G2), (∂uH)(G2))
(leadH(G2))2δg−1−dG

(−1)deg(leadT h)(deg(leadT h)−1)/2(1 + 4(mg + s2(ωh,g))),

where mg = �(1+(deg g)(degT h))/2� and deg g 
 0 (depending only on degu,T h).
If we had instead chosen g of large degree as above such that h(g2) is not sep-

arable and G ∈ W [u] is a lift of g with lead(G) ∈ W×, then since H(G2) has the
same degree as its reduction h(g2) we see via (3.2) that RW (H(G2), (∂uH)(G2))
has reduction that is a k×-multiple (depending on G) of

Rk(h(g2), (∂uh)(g2)) = Rk(h(g2), h(g2)′) = 0.

Thus, RW (H(G2), (∂uH)(G2)) ∈ 2W in such cases, so although discW (H(G2)) may
not be congruent modulo 8 to (5.10) when h(g2) is not separable, the expression
(5.10) always makes sense in W and is a non-unit precisely when discW (H(G2))
is a non-unit. We can therefore use the resultant RW (H(G2), (∂uH)(G2)) from
characteristic 0 to study discW (H(G2)) mod 8W even though usually (∂uH)(G2) �=
H(G2)′ in W [u].

Since RF [u](H, ∂uH) ∈ F [u] is nonzero, by Theorem 4.1 for large n we obtain an
identity of algebraic functions on Polyn/F ,

(5.11) RF (H(G), (∂uH)(G)) = β0β
n
1 · lead(G)m0+m1n ·

∏
x

Px,n(G)ex ,
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with m0, m1 ∈ Z and β0, β1 ∈ F× independent of n, the product taken over the
set of x = (ux, tx) ∈ ZH ∩ Z∂uH ⊆ A2

F , Px,n(G) = NF (x)/F (G(ux) − tx), and ex =
ix(ZH , Z∂uH). The parameters in (5.11) may depend on the fixed choice of H lifting
h (subject to the conditions degT H = degT h, degu(leadT (H)) = degu(leadT (h)),
and degu,T H = degu,T h). When G ∈ W [u], the left side of (5.11) is a resultant
over W . We now show that the identity (5.11) over F can be factored in a manner
that is well-behaved with respect to W .

Lemma 5.6. For large n (depending only on degu,T h and not k or H), the algebraic
maps

(5.12) β0 ·
∏

|ux|≤1,|tx|>1

P ex
x,n, βn

1 ·
∏

|ux|>1

P ex
x,n : Poly≤n/F → A1

F

extend uniquely to W -maps Poly≤n/W → A1
W with nonzero reduction. That is,

these polynomial functions in a0, . . . , an have W -coefficients and have nonzero re-
duction.

Proof. When |ux| ≤ 1 and |tx| > 1, we have an identity

(5.13) Px,n(G) = NF (x)/F (G(ux) − tx) = NF (x)/F (tx) · NF (x)/F (t−1
x G(ux) − 1)

as algebraic functions of G ∈ Poly≤n/F . Likewise, if we let G∗ denote the polyno-
mial of (possibly fake) degree n obtained by reversing the order of the coefficients
of G, then for |ux| > 1 we have an identity
(5.14)

Px,n(G) = NF (x)/F (G(ux) − tx) = NF (x)/F (ux)n · NF (x)/F (G∗(1/ux) − u−n
x tx)

and |u−n
x tx| < 1 for large n. Note the nth power of NF (x)/F (ux) in (5.14). Since

H(ux, tx) = 0 and leadT H ∈ W [u] has unit leading coefficient, for |ux| > 1 the
largeness on n that is required to force |u−n

x tx| < 1 is determined by degu,T H =
degu,T h (use an integrality argument).

To see that (5.12) extends over W it suffices to show that the elements

(5.15) b0 := β0 ·
∏

|ux|≤1,|tx|>1

NF (x)/F (tx)ex , b1 := β1 ·
∏

|ux|>1

NF (x)/F (ux)ex

in F are integral. We shall prove these are in fact in W× (this claim has nothing
to do with n), so for large n determined by degu,T h the first map in (5.12) extends
over W and has constant reduction b0 ∈ k×. Likewise, for the same large n the
second map in (5.12) then extends over W and has reduction

g �→ b1 · an(g)
∑

|ux|>1[F (x):F ]ex

for g =
∑

i≤n ai(g)ui, since for G ∈ Poly≤n/F (F ) = F
n+1

with coefficients in W

the value G∗(1/ux) has the same reduction as G∗(0) = an(G) when |ux| > 1.
We may assume k is algebraically closed, so k is infinite. Thus, as we have seen

in the beginning of this section, for n > max(ν(h), ν(∂uh)) there exists gn ∈ k[u]
of degree n such that Rk(h(gn), (∂uh)(gn)) �= 0. For Gn ∈ W [u] lifting any such gn

with lead(Gn) ∈ W×, the W -resultant of H(Gn) and (∂uH)(Gn) is a unit in W .
Thus, the left side of (5.11) is a unit in W when evaluated at Gn. Now consider
the right side of (5.11) when evaluated at Gn. The contribution of lead(Gn) is
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an integral unit, so we conclude β0β
n
1

∏
x Px,n(Gn)ex ∈ W×. By the norm-scaling

calculations (5.13) and (5.14), we thereby obtain that the product

(β0 ·
∏

|ux|≤1,|tx|>1

NF (x)/F (tx)ex)(β1 ·
∏

|ux|>1

NF (x)/F (ux)ex)n ·
∏

|ux|,|tx|≤1

Px,n(Gn)ex

lies in W×, or equivalently b0b
n
1 ·

∏
|ux|,|tx|≤1 Px,n(Gn)ex ∈ W×.

Obviously a W -point x = (ux, tx) in the zero loci of H and ∂uH reduces to
a geometric point in the zero loci of h and ∂uh. Thus, for such x we conclude
via Theorem 4.5 that the reduction of Px,n(Gn) ∈ W must be nonzero, since the
resultant of h(gn) and (∂uh)(gn) is nonzero. Hence, Px,n(Gn) ∈ W× for such x, so
b0b

n
1 ∈ W× for all large n. This forces b0, b1 ∈ W×. �

In the study of (5.11) with G replaced by G2, where G has unit leading coefficient,
we will be able to ignore the x’s with |ux| > 1 due to:

Theorem 5.7. For G ∈ W [u] with lead(G) ∈ W× and n = deg G large (determined
by degu,T h), β2n

1 ·
∏

|ux|>1 Px,2n(G2)ex ∈ (W×)2.

Proof. By Lemma 5.6, the square β2n
1 ·

∏
|ux|>1 NF (x)/F (ux)2nex = b2n

1 is a unit, so
we may divide by this without harm. This reduces us to proving

(5.16)
∏

|ux|>1

NF (x)/F (G∗(1/ux)2 − u−2n
x tx)ex ∈ (W×)2,

where G∗ is the polynomial of (possibly fake) degree n obtained by reversing the
order of the coefficients of G. Note that the square G∗(1/ux)2 is a unit when
|ux| > 1, as its reduction is lead(g)2 �= 0. Since u−2n

x tx → 0 as n → ∞, for large
n we see that G∗(1/ux)2 − u−2n

x tx is very close to a unit square in the valuation
ring of F (x). Hence, depending only on the absolute ramification degree of F (x)
(bounded by [F (x) : F ]) and not on k, we can make n large enough such that
G∗(1/ux)2 − u−2n

x tx is a square in the integral units of F (x). Since

[F (x) : F ] ≤ degF (ZH ∩ Z∂uH) ≤ degu,T H · degu,T ∂uH

and degu,T H = degu,T h, the largeness condition on n only depends on degu,T h.
Passing to an n that is uniformly large for all the finitely many x’s such that
|ux| > 1, the norm-product (5.16) is a unit square in W . �

To emphasize that the unit b0 in W from (5.15) depends on H, we now rename
it: define

bH = β0 ·
∏

|ux|≤1,|tx|>1

NF (x)/F (tx)ex ∈ W×,

so bH depends on H since the algebraic factorization on the right side of (5.11)
depends on H. Also define

RH(G) := RW (H(G2), (∂uH)(G2)).

Using Lemma 5.6 and Theorem 5.7, together with the obvious fact that lead(G2)
is a unit square when G ∈ W [u] has unit leading coefficient, the identity (5.11)
implies
(5.17)
RH(G) ∈ bH ·

∏
|ux|≤1,|tx|>1

NW (x)/W (t−1
x G(ux)2−1)ex ·

∏
|ux|,|tx|≤1

Px,2n(G2)ex · (W×)2
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when the reduction g of G has degree that is sufficiently large (depending on
degu,T h).

Since bH ∈ W× and all terms in the products in (5.17) are integral, the resultant
RH(G) is a unit in W if and only if each of the terms in the products in (5.17)
is a unit, in which case the image of RH(G) in W×/(W×)2 is represented by the
expression in (5.17).

Define

b̃H = (−1)deg(leadT h)(deg(leadT h)−1)/2 · lead(leadT H)eH · bH ∈ W×

where eH = 1 if leadT H �∈ W× and eH = deg(leadT ∂uH) if leadT H ∈ W×; b̃H

absorbs both the constant sign-factor and (by Remark 5.2) the odd-exponent power
of the unit lead(H(G2)) in (5.10) modulo (W×)2. Choose g ∈ k[u] with large degree
as required in (5.10) and (5.17), and choose G ∈ W [u] lifting g with deg G = deg g.
When h(g2) is separable it follows from (5.10) that discW (H(G2)) ∈ W× is a unit-
square multiple of the integral product

b̃H · (1 + 4(mg + s̃2(ωh,g))) ·
∏

|ux|≤1,|tx|>1

NW (x)/W (t−1
x G(ux)2 − 1)ex(5.18)

·
∏

|ux|,|tx|≤1

Px,2n(G2)ex ,

with mg = �(1 + deg g degT h)/2� and s̃2(ωh,g) denoting any lift of s2(ωh,g) from k
to W (see (5.3)). On the other hand, if h(g2) is not separable, then (5.17) implies
that one of the terms Px,2n(G2) with |ux|, |tx| ≤ 1 is in the maximal ideal of W , so
(5.18) is also in the maximal ideal of W in such cases.

Motivated by (5.18), consider the W -scheme map LH,n : Poly≤n/W → A1
W

defined by

LH,n : G =
∑
i≤n

aiu
i �→ b̃H ·

∏
|ux|≤1,|tx|>1

NW (x)/W (t−1
x G(ux)2 − 1)ex

·
∏

|ux|,|tx|≤1

Px,2n(G2)ex .

Each term on the right, viewed as an algebraic function of G, factors through the
division-algorithm morphism

(5.19) ρ̃n,H := ρn,(Mgeom
H )≤1 : Poly≤n/W → W [u]/((Mgeom

H )≤1)

to the affine W -scheme of remainders modulo the monic polynomial

(5.20) (Mgeom
H )≤1 :=

∏
|ux|≤1

(u − ux) ∈ W [u],

which is separable over F . Here we are viewing W [u]/((Mgeom
H )≤1) as an affine

space over SpecW . Since ρ̃n,H is smooth and surjective, it follows by Yoneda’s
lemma (or a direct construction with norms) that

(5.21) LH,n = LH ◦ ρ̃n,H

for a unique W -scheme map LH : W [u]/((Mgeom
H )≤1) → A1

W that is independent
of n.
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Summarizing the conclusions of the above efforts, for any g ∈ k[u] with large
degree (determined by degu,T h) and any G ∈ W [u] lifting g with deg G = deg g,
we have

discW (H(G2)) ≡ (1 + 4(�(1 + deg g degT h)/2� + s2(ωh,g)))(5.22)

· LH(ρ̃n,H(G)) · (W×)2 mod 8W

when h(g2) is separable, and otherwise both sides lie in 2W/8W .
When k is finite, we will use the quadratic character of (5.22) to investigate

µ(h(g2)). Before passing to the case of finite k we study the relationship between
(Mgeom

H )≤1 and Mgeom
h . We may factor Mgeom

H in F [u] as a product of monic
polynomials

Mgeom
H = (Mgeom

H )≤1(Mgeom
H )>1,

where the roots of (Mgeom
H )≤1 are the roots of Mgeom

H in W (see (5.20)) and
(Mgeom

H )>1 contains the other roots. Each root of the squarefree polynomial
(Mgeom

H )≤1 is integral over W and is a root of the resultant RW [u](H, ∂uH), so
this resultant is divisible by (Mgeom

H )≤1 in W [u].

Definition 5.8. The reduction of (Mgeom
H )≤1 is denoted by M

geom

H ∈ k[u].

To compute M
geom

H , choose c ∈ F× such that cMgeom
H is primitive in W [u] and

has its unit coefficient in highest degree equal to 1. The reduction of cMgeom
H modulo

2 is M
geom

H . By reduction of divisibility over W , M
geom

H divides Rk[u](h, ∂uh) in
k[u]; the polynomial M

geom

H need not be squarefree (see Example 5.15).
There is a general relationship between Mgeom

h and the radical of M
geom

H :

Lemma 5.9. For all lifts H ∈ W [u][T ] of h ∈ k[u][T ] such that degT H = degT h,
degu,T H = degu,T h, and leadT (H) ∈ W [u] has the same u-degree as leadT (h) ∈
k[u], we have Mgeom

h |Mgeom

H in k[u]. In particular, for deg g sufficiently large
(depending only on degu,T h and not on H or k), the property of h(g2) being square-
free is determined by g mod M

geom

H . If leadT h is separable (e.g., h is monic in T ),
then Mgeom

h is the radical of M
geom

H .

Proof. Recall that by Corollary 4.7(2), g mod Mgeom
h determines whether or not

h(g2) is squarefree. Since Mgeom
h is squarefree, clearly Mgeom

h |Mgeom

H if and only if
each root of Mgeom

h is the reduction of an integral root of Mgeom
H . We will prove

this root-lifting property by using the structure theorem for quasi-finite separated
morphisms.

We know h is not a unit in k[u][T ], and ∂uh is not a zero divisor in k[u][T ]/(h)
since no irreducible factor of h divides ∂uh (by Lemma 3.5(2)). Thus the k-algebra
k[u][T ]/(h, ∂uh) is finite, ∂uH is nowhere a zero divisor on Spec W [u][T ]/(H) at
points over the closed point of SpecW , and the W -scheme Spec W [u][T ]/(H, ∂uH)
is flat at points over the closed point of SpecW . (We used the local flatness criterion
for the second and third assertions.) On the generic fiber over SpecF (F is the
fraction field of W ), F [u][T ]/(H, ∂uH) is a finite (flat) F -algebra since {H = 0}
meets {∂uH = 0} at only finitely many points in A2

F (Lemma 5.1). To summarize,
the finite-type separated morphism Spec W [u][T ]/(H, ∂uH) → Spec W is quasi-
finite and flat.

By the structure theorem for quasi-finite separated schemes over a Henselian
local base [11, 18.5.11], W [u][T ]/(H, ∂uH) equals Rf × R′, where Rf is a finite
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product of finite local W -algebras and R′ is a quasi-finite (hence finite) F -algebra.
Moreover, Rf must be W -flat. The image of the map

SpecRf
∐

SpecR′ = Spec W [u][T ]/(H, ∂uH) → Spec W [u] = A1
W

is topologically a union of a closed subscheme that is finite flat over W (the im-
age of Spec Rf) and an F -finite closed subscheme of the generic fiber (the image
of SpecR′). The geometric points of this image in the closed and generic geo-
metric fibers of A1

W over Spec W are the roots of Mgeom
h and Mgeom

H respectively.
Thus, each root of Mgeom

h is the reduction of an integral root of Mgeom
H because

each geometric closed point of a finite flat W -scheme (specifically, Spec Rf) is the
specialization of an integral generic-fiber geometric point.

To prove that Mgeom
h is the radical of M

geom

H when leadT h is separable, we
check that if (c, t) is a geometric point in the common zero locus of H and ∂uH,
and c is integral (such c’s are the roots of (Mgeom

H )≤1), then t is also integral. It
suffices to show that H(c, T ) or (∂uH)(c, T ) has unit leading coefficient. That is, if
(leadT h)(c) = 0 then we want (leadT h)′(c) �= 0. Since leadT h is separable, we are
done. �

Now let g ∈ k[u] be arbitrary with large degree as in Lemma 5.9. The property
of h(g2) being separable is determined by g mod M

geom

H , and even by g modulo the
radical of M

geom

H . Thus, the monic polynomial M
geom

H constructed by reduction
from characteristic 0 controls the separability of h(g2) in characteristic 2 when
deg g is as large as required in (5.10) and (5.17).

For the rest of this section we specialize to the case of a finite field k = κ of
characteristic 2. We want to study Möbius behavior in κ[u]. Pick a nonconstant
f ∈ κ[u][T 2] which is squarefree in κ[u][T ] and has no local obstructions. Write
f(T ) = h(T 2). Choose a lift H of h as in Lemma 5.9, and pick g ∈ κ[u] of
large degree (depending only on degu,T h) as in Lemma 5.9. Finally, choose a lift
G ∈ W [u] of g with the same degree (i.e., with unit leading coefficient). Hence,
H(G2) is a lift of h(g2) with the same degree, and discW (H(G2)) is a unit precisely
when h(g2) is separable. Recall (as above Theorem 2.4) that if discW (H(G2)) ∈ W×

then it lies in κ× × (1 + 4W ); that is, its 1-unit part lies in 1 + 4W , not merely in
1 + 2W , when it is a unit in W .

By Theorem 2.4 we have

(5.23) µ(h(g2)) = (−1)deg(leadT h)χ̃(discW (H(G2))),

where χ̃ vanishes on 2W and is defined on κ× × (1 + 4W ) by

(5.24) χ̃(c · (1 + 4w)) = (−1)Trκ/F2 (w mod 2).

We can now prove an analogue of (4.14) in characteristic 2:

Theorem 5.10. Let κ be finite of characteristic 2, and h ∈ κ[u][T ] be such that h �∈
κ and h(T 2) is squarefree in κ[u][T ]. Also assume that h(T ) has no local obstruc-
tions. Fix H ∈ W [u][T ] lifting h such that degT (H) = degT (h), leadT (H) ∈ W [u]
has unit leading coefficient (so degu(leadT (H)) = degu(leadT (h))), and degu,T H =
degu,T h.

For g of sufficiently large degree n,
(5.25)
µ(h(g2)) = (−1)deg leadT (h)+[κ:F2]	(1+n degT h)/2
+Trκ/F2(s2(ωh,g)) · χ̃(LH(ρ̃n,H(G))),
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where G ∈ W [u] is any lift of g with degree n. Here, s2(ωh,g) is defined by (5.3),
ρ̃n,H is defined by (5.19), and LH is defined in (5.21). The “sufficient largeness”
for deg g only depends on degu,T h and not on κ or H.

In particular, if g1 and g2 ∈ κ[u] have sufficiently large degrees (depending only
on degu,T h), deg g1 ≡ deg g2 mod 4, and g1 ≡ g2 mod M

geom

H , then

(5.26) (−1)Trκ/F2 (s2(ωh,g1 ))µ(h(g2
1)) = (−1)Trκ/F2 (s2(ωh,g2 ))µ(h(g2

2)).

If degT h is even then the congruence on deg gj’s for (5.26) to hold need only
be taken modulo 2, and if 4| degT h or if [κ : F2] is even then no congruence is
necessary on the deg gj’s for (5.26) to hold.

Proof. By the above calculations, LH(ρ̃n,H(G)) ∈ W lies in κ××(1+4W ) when it is
a unit (because the same is true for both discW (H(G2)) and squares in W×). Thus,
the asserted formula (5.25) for µ(h(g2)) makes sense and is immediate from (5.23),
(5.24), and (5.22). Since any two elements g1, g2 ∈ κ[u] that are congruent modulo
the reduction M

geom

H of the monic polynomial (Mgeom
H )≤1 may be respectively lifted

to G1, G2 ∈ W [u] with unit leading coefficients such that G1 ≡ G2 mod (Mgeom
H )≤1

(so ρ̃n1,H(G1) = ρ̃n2,H(G2) with nj = deg Gj = deg gj), the identity (5.26) follows
from the congruence conditions on the gj ’s and deg gj ’s using (5.25). �

Since s2(ωh,g2) = 0 we get

Corollary 5.11. Let κ be finite of characteristic 2, and h ∈ κ[u][T ] be such that
h �∈ κ, h has no local obstructions, and h(T 2) is squarefree in κ[u][T ]. Fix H ∈
W [u][T ] lifting h as in Theorem 5.10.

For g of sufficiently large degree n (depending only on degu,T h),

µ(h(g4)) = (−1)deg leadT h+[κ:F2](degT h)·n · χ̃(LH(ρ̃n,H(G))),

where G ∈ W [u] is any lift of g with degree n. In particular, for g1 and g2 in κ[u]
of such sufficiently large degrees in κ[u],

(5.27) g1 ≡ g2 mod M
geom

H , deg g1 ≡ deg g2 mod 2 =⇒ µ(h(g4
1)) = µ(h(g4

2)).

There is no dependence on deg g mod 2 if [κ : F2] or degT h is even.

For applications it is convenient to restate the final part of Corollary 5.11 as
follows (a characteristic 2 analogue of Theorem 4.8):

Theorem 5.12. Let κ be a finite field with characteristic 2. Fix f(T ) ∈ κ[u][T 4]
that is squarefree in κ[u][T ] and assume f �∈ κ. There is a nonzero polynomial
M = Mf,κ in κ[u] such that for all g1 and g2 in κ[u] with sufficiently large degrees
n1 and n2,

(5.28) g1 ≡ g2 mod M, n1 ≡ n2 mod 2 =⇒ µ(f(g1)) = µ(f(g2)).

If [κ : F2] is even or degT f ≡ 0 mod 8, then there is no dependence on deg g mod 2.
The modulus M may be chosen to be M

geom

H where f(T ) = h(T 4) and H is any
lift of h as in Theorem 5.10.

Example 5.15 below suggests that in characteristic 2 the modulus Mmin
f,κ of min-

imal degree in Theorem 5.12 (which must divide any modulus in Theorem 5.12) is
not always squarefree, which is in contrast with Theorem 4.8. However, it divides
the reduction of a squarefree polynomial from characteristic 0.
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Example 5.13. Let f(T ) = T 4 + u. Take H(T ) = T + u ∈ W [u][T ] as a lift of
h(T ) = T + u from κ[u][T ]. Clearly M

geom

H = 1 in κ[u], so Corollary 5.11 says
that µ(f(g)) = µ(h(g4)) only depends on deg g mod 2 when deg g 
 0. In [7]
there is a more precise study of µ(g2 + u) which, replacing g with g2, implies that
µ(g4 + u) = (−1)[κ:F2] deg g when deg g ≥ 1. It follows that g4 + u is never prime
when [κ : F2] is even and g is nonconstant or when [κ : F2] is odd and deg g is even.
See [6, Table 1] for data on prime values of T 4 + u over F2[u].

Example 5.14. Let f(T ) = T 8 + (u3 + u)T 4 + u in κ[u][T ]. Take H(T ) = T 2 +
(u3 +u)T +u. A calculation shows that Mgeom

H = 6u5 +2u3 +1, so M
geom

H = 1 and
degT H is even. Thus Corollary 5.11 says that µ(f(g)) is constant for deg g 
 0.
A closer analysis, carried out in [7], shows that µ(f(g)) = 1 for deg g ≥ 3 and this
is sharp: µ(f(g)) = −1 for some g of degree 2.

Example 5.15. In κ[u][T ], let f(T ) = T 16 + (u9 + u4 + u2 + u)T 8 + u5 + u3

and define the lift H = T 4 + (u9 + u4 + u2 + u)T 2 + u5 + u3 ∈ W [u][T ]. Then
M

geom

H = u24(u + 1)8, so for g1 and g2 with sufficiently large degree,

g1 ≡ g2 mod u24(u + 1)8 =⇒ µ(f(g1)) = µ(f(g2)).

Further work shows that the lower-degree modulus u9(u+1)4 works in (5.15) when
g1 and g2 have degree at least 2. Numerical evidence suggests that when κ = F2 we
can even use u3(u+1) instead of u9(u+1)4 as a modulus (but not any proper factor
of u3(u+1)). The proof of Corollary 5.11 shows that in principle the determination
of the minimal degree monic modulus in characteristic 2 is a finite calculation, but
we have not carried it out explicitly in this example.

6. A revised characteristic-p conjecture

We want to describe applications of the preceding work in this paper to the
formulation of a modified conjectural asymptotic estimate on primality statistics of
prime polynomials in κ[u][T ]. Our new correction factor makes sense on its own for
squarefree polynomials, not just prime polynomials, so we define it in that setting:

Definition 6.1. Let κ be a finite field. Let f ∈ κ[u][T ] be squarefree. Assume
degT f > 0 and f has no local obstructions. For any nonzero M ∈ κ[u] and n ≥ 0,
define

(6.1) Λκ,M (f ; n) := 1 −
∑

deg g=n,(f(g),M)=1 µ(f(g))∑
deg g=n,(f(g),M)=1 |µ(f(g))| .

By work of Poonen [14, Thm. 3.1] applied to M · f , the denominator in (6.1) is
positive for large n. Note that Λκ,M (f ; n) is a rational number in the interval [0, 2].
The closer Λκ,M (f ; n) is to 1 (resp. to 0, to 2), the more equally distributed (resp.
skewed towards 1, skewed towards −1) the nonzero Möbius values of f(g) are for g
in degree n such that (f(g), M) = 1.

The particular case of most interest to us is when f(T ) is a polynomial in T p

for p �= 2 or a polynomial in T 4 for p = 2. In this case µ(f(g)) is periodic in g
(Theorems 4.8 and 5.12) and there is a monic modulus of periodicity Mmin

f,κ having
least degree. For this particular modulus we set

(6.2) Λκ(f ; n) := Λκ,Mmin
f,κ

(f ; n).
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(We will see in Example 6.10 that Λκ(f ; n) is not always the same as Λκ,1(f ; n),
although it is in Examples 1.1 and 2.5.) For any two choices of modulus M1

and M2 as in Theorem 4.8 or Theorem 5.12, Theorem 6.5 below ensures that the
corresponding sequences Λκ,M1(f ; n) and Λκ,M2(f ; n) agree for all n ≥ n0, where
n0 depends only on deg M1, deg M2, and degu,T f . This provides a robustness that
makes Definition 6.1 less sensitive to change in M than it may initially seem to
be when f(T ) is a polynomial in T p or T 4. (For example, if p �= 2 then Λκ(f ; n)
equals Λκ,Mgeom

f
(f ; n) for large n depending only on degu,T f .) The marvelous fact

(Theorem 6.5) is that in this case Λκ(f ; n) is periodic in n with period 1, 2, or 4 for
all sufficiently large n (determined by degu,T f), so Λκ(f ; n) is far simpler than it
at first appears to be. This periodicity makes the following conjecture on primality
statistics simple to appreciate.

Conjecture 6.2. Let κ be a finite field and let f ∈ κ[u][T ] be prime with positive
T -degree and no local obstructions. Define C(f) = log q ·

∏
v �=∞(1 − ωf (v)/qv)/

(1− 1/qv), where q = #κ, the product runs over all the places of κ(u) except ∞, qv

is the size of the residue field at v, and ωf (v) denotes the number of roots of f in
the residue field at v. If f ∈ κ[u][T p] for p �= 2 and if f ∈ κ[u][T 4] for p = 2, then
as n → ∞,

(6.3) #{g ∈ κ[u] : deg g = n, f(g) is prime} ?∼ Λκ(f ; n)
C(f)

degT f

(q − 1)qn

log(qn)
.

The product C(f) is defined according to increasing values of qv, with all v �=
∞ having a common qv-value introduced into the product at the same time. (It
is convergent because f has no local obstructions, and usually is not absolutely
convergent.)

Example 6.10 will show that in (6.3) it is crucial to impose the relative primality
condition (f(g), Mmin

f,κ ) = 1 on the averaging process in the definition of Λκ(f ; n).
If 0 is in the period of the sequence Λκ(f ; n) (e.g., Example 6.6 below), then for
each g of degree n where Λκ(f ; n) = 0 either µ(f(g)) = 1 or (f(g), Mmin

f,κ ) �= 1, so
f(g) is composite when n is large (in particular, we at least require n > deg Mmin

f,κ ).
Thus, the appearance of 0 in the period for Λκ(f ; n) implies that the left side of
(6.3) is 0 for such n. When n runs through a sequence in which Λκ(f ; n) does not
vanish, we have not proved a connection between Λκ(f ; n) and primality counts for
f(g) with deg g = n as n → ∞, but (6.3) agrees well with the extensive numerical
testing that we have carried out.

Let us give a brief heuristic justification for including the relative primality con-
dition (f(g), M) = 1 in the definition of Λκ(f ; n) for large n with M a nonzero
multiple of Mmin

f,κ . When making asymptotic primality predictions based on a ran-
domness model, it is reasonable to expect that imposing a local condition such as
(f(g), M) = 1 on the sample space of the g’s (with a fixed nonzero M) should not
influence the statistics. But our theory and examples of Möbius periodicity show
that for a nonzero M ∈ κ[u] the formation of Möbius averages as in the definition
of Λκ,M (f ; n) for large n can be sensitive to the particular choice of M , except
when M is a multiple of Mmin

f,κ . Hence, it is natural to require M to be sufficiently
divisible in this sense when we define Λκ(f ; n).

In Theorem 5.12 we gave a Möbius periodicity result for polynomials in T 4,
but we did not address the possibility that there may also be periodicity for other
polynomials in T 2 in characteristic 2. Numerical evidence suggests that Möbius
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periodicity can arise in many such cases (including the possibility of periodicity
depending on deg g mod 4 rather than just on deg g mod 2 as in Theorem 5.12),
but the general picture appears to be complicated. For example, T 2 + u over
F2[u] does not appear to exhibit non-trivial Möbius periodicities, though it also
numerically fits the naive conjecture for predicting primality statistics (of g2 + u
with g ∈ F2[u] of large degree) and therefore a non-trivial correction factor in this
case (as in Conjecture 6.2) is apparently not necessary.

Remark 6.3. Let us make some observations concerning omitted cases in Conjec-
ture 6.2. If Theorem 5.12 can be generalized to allow f ∈ κ[u][T 2] then it should
be possible to formulate a version of (6.3) in characteristic 2 without the restriction
that f ∈ κ[u][T 4]. Now suppose f is separable and irreducible over κ(u) without
local obstructions. In this case we expect f(g) to be prime as often as analogies
between Z and κ[u] predict, and in the context of Conjecture 6.2 this corresponds
to removing the factor Λκ(f ; n) from (6.3). Thus, let us formulate a conjecture
for p �= 2 that does not treat the separable and inseparable cases separately. Let
f(T ) be any prime polynomial in κ[u][T ] with positive T -degree and no local ob-
structions. Consider the projection π from Zf = {f = 0} to the T -axis. The
finite (possibly empty) set B ⊆ Zf of isolated points in the non-étale locus of π
has finite image in the u-axis, so we may define Mgeom

f in terms of B just as we
can in the inseparable case. (This works even if Definition 3.4 does not apply to
f .) Set Λκ(f ; n) = Λκ,Mgeom

f
(f ; n), which recovers (6.2) for large n when f(T ) is

a polynomial in T p (by Theorem 6.5). Equation (6.3) now makes sense as a con-
jecture in characteristic p �= 2 even if f is not a polynomial in T p, but nothing is
proved about the behavior of Λκ(f ; n) when f is separable. (See [2] for some work
in the case of separable f .) We expect that any reasonable averaging process for
µ(f(g)) should tend to 0 in the large-degree limit when f is separable over κ(u),
so we expect Λκ(f ; n) → 1 as n → ∞ for separable f . This would make (6.3) for
separable f equivalent to the conjecture based only on analogies between Z and
κ[u].

For inseparable f we have always been able to prove a posteriori that Λκ(f ; n) =
1 for all large n in congruence classes c mod 4 for which the numerical data suggest
that classical analogies are making correct asymptotic predictions when n ≡ c mod
4. In Examples 6.9 and 6.10 we will check that (6.3) appears to fix the discrepancies
in Examples 1.1 and 1.2.

We turn now to justifying the properties of Λκ,M (f ; n) used above when f is
inseparable in T . For Λκ,M (f ; n) to make sense, its denominator has to be positive:
there needs to be a g ∈ κ[u] of degree n such that (f(g), M) = 1 and f(g) is
squarefree. The following lemma addresses this problem and gives some information
on the required largeness of n.

Lemma 6.4. Let κ be a finite field of characteristic p and let f ∈ κ[u][T p] be
squarefree in κ[u][T ], and assume that f has no local obstructions (so in particular,
f has no prime factors in κ[u]). For any nonzero M ∈ κ[u], there exist polynomials
g ∈ κ[u] with any sufficiently large degree (depending only on deg M and degu,T f)
such that (f(g), M) = 1 and f(g) is squarefree in κ[u].

Proof. By replacing M with its radical, we can assume M is squarefree. Hence,
f(g) is squarefree and relatively prime to M if and only if Mf(g) is squarefree.
Since M · f(T ) ∈ κ[u][T ] is squarefree (as f has no irreducible factors in κ[u]), the
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absence of local obstructions allows us to apply [14, Thm. 3.4] to get the result
except for determining how the required largeness of deg g depends on M and f .

By our work on Möbius periodicity (using extra care in characteristic 2), since
f is a polynomial in T p we know that if deg g is large enough (depending only
on degu,T f) then whether or not f(g) is squarefree depends only on a congru-
ence condition on g modulo a nonzero polynomial with degree bounded in terms
of degu,T f . The relative primality property (f(g), M) = 1 is also a congruence
condition on g mod M , so overall the combined properties we are requiring for g
are congruence conditions modulo a nonzero polynomial with degree bounded in
terms of deg M and degu,T f when deg g is sufficiently large (depending only on
degu,T f). Since we have shown that this collection of congruence conditions in
κ[u] has a solution in some large degree, it has solutions in any degree exceeding a
bound determined by deg M and degu,T f . �

Our work in §2–§5 leads to the following important periodicity result.

Theorem 6.5. Let κ be finite, and let f(T ) be as in Definition 6.1. Assume
f ∈ κ[u][T p], and if p = 2 then assume f ∈ κ[u][T 4]. For any finite extension
κ′/κ, the sequence Λκ′(f ; n) is periodic with period dividing 4 for n 
 0, and this
largeness for n only depends on degu,T f and not on κ′.

For any nonzero M in κ′[u] that is divisible by Mmin
f,κ′ , Λκ′(f ; n) = Λκ′,M (f ; n)

when n is sufficiently large. More precisely, for each d ≥ 1 there is an n0 depending
only on degu,T f and d such that if M ∈ κ′[u] is a nonzero multiple of Mmin

f,κ′ in
κ′[u] with deg M ≤ d, then Λκ′(f ; n) = Λκ′,M (f ; n) for all n ≥ n0.

Proof. This is a simple argument with quadratic character sums; in [9] the argument
is given with κ[u] replaced by the coordinate ring of any smooth affine κ-curve with
one geometric point at infinity. The main requirement on the largeness of n is that
it be large enough as in Theorem 4.8 (for p �= 2), Theorem 5.12 (for p = 2), and
Lemma 6.4. �

Periodicity of Λκ,1(f ; n) (omitting the relative primality condition on f(g)’s)
follows by the same arguments as for Λκ(f ; n) in the proof of Theorem 6.5.

Example 6.6. Let p �= 2 and f(T ) = T p + u ∈ κ[u][T ] (Example 2.5). Then
Mgeom

f = 1, Λκ(f ; n) = 1 for odd n, Λκ(f ; n) = 0 for positive n ≡ 0 mod 4,
and Λκ(f ; n) = 1 − χκ(−1) if n ≡ 2 mod 4. In particular, ΛF3(T

3 + u; n) is
1, 2, 1, 0, 1, 2, 1, 0, . . . , ΛF9(T

3 + u; n) is 1, 0, 1, 0, 1, 0, 1, 0, . . . , and ΛF5(T
5 + u; n)

is 1, 0, 1, 0, 1, 0, 1, 0, . . . for n ≥ 1. This is consistent with numerical data when
(6.3) is tested for T p +u over F3,F9, and F5. In particular, gp +u is not prime for
any g in degree n when Λκ(T p + u; n) = 0.

Example 6.7. Let p �= 2 and f(T ) = T p + u2 ∈ κ[u][T ]. Then Mgeom
f = u and

µ(gp + u2) = (−1)n(χ(−1))n(pn+1)/2χ(2)nχ(c)n+1χ(g(0)),

where g has leading term cun and n ≥ 1. In particular, Λκ(T p + u2; n) = 1 for
n ≥ 1; this is consistent with the numerical observation that if κ = F3,F9,F5, or
F7, then asymptotically gp + u2 appears to be prime as often as classical analogies
suggest it should be.

Example 6.8. When

f(T ) = T 12 + (2u4 + 2u3 + 2u2 + u + 1)T 6 + 2u3 + 2u2 + u
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in characteristic 3, ΛF3(f ; n) = 2/3 for n ≥ 3. The numerical evidence for Conjec-
ture 6.2 in this case looks good.

Example 6.9. Let f(T ) = T 12+(u+1)T 6+u4 be the polynomial from Example 1.1,
considered over any finite field κ of characteristic 3; let q = #κ. (The polynomial
f is irreducible over F3 but it factors over F9.) We use the formula µ(f(g)) =
χ(g(0)2(g(1)2 +1)) from (3.6), and M := Mgeom

f = u(u−1). We need to determine
when (f(g), u(u − 1)) �= 1:

f(g)|u=0 = g(0)6(g(0)2 + 1)3, f(g)|u=1 = (g(1)2 + 1)6.

If (u − 1)|f(g), then g(1)2 + 1 = 0, so µ(f(g)) = 0. Therefore the condition that
(f(g), u − 1) = 1 in the sums in Λκ(f ; n) can be ignored. We have u|f(g) if and
only if g(0) = 0 or g(0)2 + 1 = 0; if g(0) = 0 then µ(f(g)) = 0. Thus, the condition
(f(g), u(u− 1)) = 1 in the sums of Λκ(f ; n) can be relaxed to g(0)2 + 1 �= 0. When
n ≥ 2, polynomials g of degree n in κ[u] are equally spread out over the pairs
(g(0), g(1)), so

Λκ(f ; n) = 1 −
∑

a,b∈κ χ(a2(b2 + 1)) −
∑

a2+1�=0 χ(a2(b2 + 1))∑
a,b∈κ |χ(a2(b2 + 1))| −

∑
a2+1�=0 |χ(a2(b2 + 1))|

=

{
1 + 1/(q − 2), if χ(−1) = 1,

1 + 1/q, if χ(−1) = −1,

since
∑

b∈κ χ(b2−d) = −1 when d �= 0. In particular, ΛF3(f ; n) = 4/3 for all n ≥ 2.
This agrees well with the data on primality statistics for f(g) in [6, Table 3].

Example 6.10. Let f(T ) be the polynomial from Example 1.2, but viewed in
κ[u][T ] for any κ of characteristic 3. We recall (3.9) from Example 3.3: when
g = cun + · · · ∈ κ[u] with n = deg g ≥ 1,

(6.4) µ(f(g)) = (−1)n(χ(−1))n(n−1)/2χ(c)n+1χ(g(1)2 + g(1) + 2)χ(g(2)).

This formula implies that Mmin
f,κ = (u − 1)(u − 2). Call this M for simplicity.

To compute Λκ(f ; n), we only count g of degree n such that (f(g), M) = 1, a
condition we want to make explicit in terms of g. Clearly (f(g), M) = 1 if and only
if f(g)|u=1 �= 0 and f(g)|u=2 �= 0. Since

(6.5) f(g)|u=1 = (g(1) − 1)3(g(1)2 + g(1) + 2)3, f(g)|u=2 = (g(2))6(g(2) + 1)3,

the condition (f(g), M) = 1 is equivalent to the combined conditions that g(1) is
not 1 or 1±

√
−1 (the term 1±

√
−1 appears only if [κ : F3] is even) and that g(2)

is not 0 or −1.
If κ has size q = 3m, then by separately treating the cases when m is even or

odd and when n is even or odd, elementary arguments resting on (6.4) and (6.5)
show that

Λκ(f ; n) =

{
1, if n > 0 is even,
1 + 2 · (−1)(n+1)/2/((q − 1)(q − 2)), if n is odd,

for odd m and

Λκ(f ; n) =

{
1, if n > 0 is even,
1 + 2/((q − 2)(q − 3)), if n is odd,

for even m.
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As a special case, for n ≥ 1 the periodic sequence of values ΛF3(f ; n) is

0, 1, 2, 1, 0, 1, 2, 1, . . . ,

which is an excellent fit with the discrepancies between Example 1.2 and the con-
jectural asymptotic for primality statistics of f(T ) on F3[u] based only on the
analogy between Z and F3[u]. Taking κ = F9, ΛF9(f ; n) = 1 for even n and
ΛF9(f ; n) = 22/21 for odd n; this fits the numerical evidence. Returning to κ = F3,
if n ≡ 1 mod 4 then µ(f(g)) = −1 only when (f(g), M) �= 1. If n ≡ 3 mod 4 then
µ(f(g)) = 1 only when (f(g), M) �= 1. In particular, since M = (u− 1)(u− 2) and
deg f(g) > 1 when deg g ≥ 1, it follows that f(g) is composite in F3[u] whenever
g ∈ F3[u] satisfies deg g ≡ 1 mod 4.

If we did not include the condition (f(g), Mmin
f,κ ) = 1 in the definition of

{Λκ(f ; n)}n≥1, then this sequence would become constant: Λκ,1(f ; n) = 1 for
n ≥ 1. In other words, the nonzero values of µ(f(g)) for g of a fixed degree
n ≥ 1 are equally often 1 and −1, but what matters for the link to primality statis-
tics appears to be the nonzero values of µ(f(g)) constrained by the additional local
condition (f(g), Mmin

f,κ ) = 1. (We can replace Mmin
f,κ with any nonzero multiple, such

as Mgeom
f when p �= 2, by Theorem 6.5.)

A striking example of the distinction between Λκ(f ; n) and Λκ,1(f ; n) when used
as correction factors in (6.3) is given by f(T ) = (u−1)T 12+u2T 6+u3−1 ∈ F3[u][T ]:
ΛF3(f ; n) = 6/5 > 1 for n ≥ 4 whereas ΛF3,1(f ; n) = 6/7 < 1 for n ≥ 3. Thus,
for this f , if we replace ΛF3(f ; n) with ΛF3,1(f ; n) in (6.3), then we would be
predicting a deficit of prime values for f(T ) in comparison to predictions based
purely on analogies with the classical case (no Λ-factor), whereas numerical data
and the actual prediction of Conjecture 6.2 suggest a surplus.

Remark 6.11. If we search for prime values of f(g) not over all g in each degree,
but just monic g in each degree (say), then we need a monic version of Λκ(f ; n).
This is a periodic sequence (with mod 4 periodicity, etc., by the same arguments),
and it can differ from Λκ(f ; n). Numerical data support the use of this new sequence
as correction factors in a “monic g sampling” version of Conjecture 6.2.

Fix κ with characteristic p �= 2 and a polynomial f ∈ κ[u][T p] with degT f
positive such that f is squarefree in κ[u][T ]. Assume that f has no local obstructions
on κ[u]. We now look at how Λκ,M (f ; n) varies when we let the constant field grow
(initially keeping f fixed, but then we shall let f vary). Our constraints on f
are inherited over any finite extension κ′/κ, and the absence of local obstructions
automatically holds if we increase κ so that #κ > degT f . For c ∈ {0, 1, 2, 3}, let
λκ′(f ; c) be the common value of Λκ′(f ; n) for all large n ≡ c mod 4. (By Theorem
6.5, this largeness of n only depends on degu,T f and not on κ′/κ.) Theoretical
considerations show that this function on Z/4Z is usually very close to 1 when
[κ′ : κ] is large enough:

Theorem 6.12. For κ and f as above with p �= 2 and a fixed c ∈ {0, 1, 2, 3}, as
[κ′ : κ] → ∞ the numbers λκ′(f ; c) either tend to 1 or else lie in the set {0, 2} for
all κ′. In the latter case, λκ′(f ; c) only depends on the parity of [κ′ : κ]. Moreover,
for “generic” f the limiting value is 1 for each c.

The meaning of genericity for f in Theorem 6.12 is that at least one of the
local intersection numbers among the points in the intersection of the zero loci of
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f and ∂uf is odd (and in particular, there is such an intersection point); we saw
in Example 4.15 that if p �= 2, then for most f (in a sense made precise with the
Zariski topology) this property is satisfied.

Theorem 6.12 is the genus-0 case of a more general result that is proved in [9] (in
the setting of arbitrary genus) by using the Lang–Weil estimate and a link between
the Λκ’s and zeta-functions. (In [9] we also prove an analogue of Theorem 6.12 for
the case p = 2 and any genus.) To illustrate Theorem 6.12, let κ′ run over finite
fields of characteristic 3 and let f(T ) be the polynomial from Example 1.2. We saw
in Example 6.10 that λκ′(f ; c) equals 1, 1±2/((q−1)(q−2)), or 1+2/((q−2)(q−3)),
where q is the size of κ′, so λκ′(f ; c) → 1 for each c as [κ′ : F3] → ∞. For any
odd p and f = αT p + (βu + γ) with α, β, γ ∈ κ and α, β �= 0, Example 2.5 gives
λκ′(f ; c) = 1 for odd c and λκ′(f ; c) = 1 − χκ′(−1)c/2 for even c. Hence, values of
0 or 2 as in Theorem 6.12 do really occur.

What happens to λκ′(f ; c) if we vary f over large finite fields (with characteristic
p �= 2)? To be precise, fix a family {

∑
αiT

µi | deg αi = di} as at the end of Example
4.15 with common T -degree d and consider finite extensions κ/Fp with #κ > d,
so there are no local obstructions for κ-points f in the Zariski-dense open locus U
satisfying the condition gcdi(αi) = 1. For ε > 0, does the proportion of f ∈ U(κ)
such that |λκ(f ; c) − 1| < ε for all c ∈ {0, 1, 2, 3} (let us say that such an f is ε-
classical) tend to 1 as [κ : Fp] → ∞? To rule out families such as {αT p +(βu+ γ)}
that give a negative answer, Example 4.15 suggests requiring di ≥ 2 for some i. The
sufficiency of this condition is proved in [9] in the setting of odd characteristic and
arbitrary genus g, with the lower bound of 2 on some di replaced with a lower bound
of 2g + 2 and with the locus of ε-classical f ’s even proved to contain all points in
a Zariski-dense open subset U0 ⊆ U with values in any sufficiently large extension
κ of Fp (where the largeness on [κ : Fp] depends on ε but U0 does not). There
we also prove that if moreover the T -degrees of f and ∂uf are odd for generic f in
the family, then there exists a positive integer N and a Zariski-dense open subset
U ′ ⊆ U such that for f ∈ U ′(κ) the correction factor λκ′(f ; ·) is not identically 1
on Z/4Z whenever N |[κ′ : κ], except for families of the form {α1T

pr

+ α0} with
deg αi ≥ 2 for some i (in which case the opposite extreme λκ′(f ; ·) = 1 on Z/4Z
occurs whenever N |[κ′ : κ] and f ∈ U(κ) lies in a suitable Zariski-dense open subset
of U). In this sense, the theory of the correction factor λκ(f ; c) is often nontrivial.
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