ON THE INTEGRALITY OF SOME GALOIS REPRESENTATIONS

Robert Gross

Boston College

April 8, 1993

ABSTRACT. We find an appropriate topology to put on K, the fraction field of the Iwasawa algebra $\Lambda = \mathbf{Z}_p[[T]]$, so that compact subgroups of K^{\times} are in fact contained in Λ^{\times} . This ensures that Galois representations to K^{\times} have image in Λ^{\times} .

Let $\Lambda = \mathbf{Z}_p[[T]]$ be the Iwasawa algebra. Λ is a unique factorization domain. The *p*-adic Weierstrass Preparation Theorem says that elements of Λ may be represented as uf, where f is a polynomial and u is a unit.

Let M = (p, T) be the maximal ideal of Λ . Topologize Λ so that a base of neighborhoods of 0 is given by powers of M, and define neighborhoods of other elements of Λ by translation.

Let K be the field of fractions of Λ . The first question to consider is how to topologize K. One somewhat obvious approach is to say that a set $U \subseteq K$ is open in K precisely when $kU \cap \Lambda$ is an open subset of Λ for all $k \in K^{\times}$. This definition makes addition and multiplication continuous. Topologized in this way, a compact subset of $GL_n(K)$ which is also a subgroup is conjugate to a subset of $GL_n(\Lambda)$. Unfortunately, there is one major drawback to this topology.

Proposition. The function $f(x) = x^{-1}$ is not continuous in this topology.

Proof. There are many ways to see this. Perhaps the simplest is to observe that the sequence $a_n = p + T^n$ converges to p. However, the sequence a_n^{-1} is closed, since for a fixed $k \in K^{\times}$, ka_n^{-1} will be an element of Λ for only finitely many n. Hence, a_n^{-1} cannot converge to p^{-1} .

We therefore need a different topology on K, and fortunately there is an obvious candidate. If $\lambda \in \Lambda$, we can define $v(\lambda) = n$ if $\lambda \in M^n$ and $\lambda \notin M^{n+1}$ and $v(0) = \infty$. Krull's Theorem [1] implies that $\bigcap M^n = \{0\}$, and so the function v is well-defined.

Lemma. v is a valuation on Λ .

Proof. Let $f, g \in \Lambda$. Set v(f) = m and v(g) = n. Obviously, $v(f + g) \ge \min(v(f), v(g))$, so we need only show that v(fg) = v(f) + v(g).

Use the Weierstrass Preparation Theorem to write $f = u_1 f'$, $g = u_2 g'$, where u_1 and u_2 are units and f' and g' are polynomials. Write $f' = \sum a_i T^i$ and $g' = \sum b_j T^j$. Let v_p be the usual p-adic valuation on \mathbf{Z}_p . Of those terms in $\sum a_i T^i$ with $v(a_i T^i) = m$, let $a_k T^k$ be the term so that $v_p(a_k)$ is minimal. (It is easy to see that there is a unique minimum, because if $v(a_i T^i) = m$, then $v_p(a_i) = m - i$.) Similarly, let $b_l T^l$ be the term in the second sum minimizing $v_p(b_l)$ subject to $v(b_l T^l) = n$.

If we now consider the coefficient c_{k+l} of T^{k+l} in the product $fg = u_1u_2f'g'$, we see that $v_p(c_{k+l}) = v_p(a_k) + v_p(b_l)$. Therefore $v(c_{k+l}T^{k+l}) = m+n$, and we finally have v(fg) = m+n.

This lemma in fact is true in considerably greater generality, but the statement does not seem to appear in the literature in this form.

¹⁹⁹¹ Mathematics Subject Classification. 22C05, 11S20.

Key words and phrases. Compact groups, Iwasawa algebra.

Because Λ is a unique factorization domain, we can extend v to K by defining v(f/g) = v(f) - v(g), and the valuation still is well-defined. Let

$$R = \{k \in K : v(k) \ge 0\},\$$

and

$$P = \{ k \in K : v(k) > 0 \}.$$

Notice that R is a discrete valuation ring, and P is the unique maximal ideal. In fact, P is principal, and we choose p as a generator.

Proposition. $R/P \cong \mathbf{F}_p(t)$.

Proof. Though this fact appears to be well-known to valuation theorists, there is no statement of it in the number-theoretic literature, so we sketch a proof.

Let $k \in K$ be an element with v(k) = 0. We can write $k = \frac{f}{g}u$, where $u \in \Lambda^{\times}$ and $f, g \in \mathbf{Z}_p[T]$. Let v(f) = v(g) = n. Then f/p^n and g/p^n are elements of $\mathbf{Z}_p[\frac{T}{p}]$. The reduction modulo P now sends $\frac{T}{p}$ to t, u to its constant term, and \mathbf{Z}_p to \mathbf{F}_p .

Corollary. R is neither compact nor locally compact.

Proof. Because R/P is infinite, we can cover R with an infinite cover of the form a + P with no finite subcover. Similarly, any neighborhood of 0 contains P^k for some k, and P^k/P^{k+1} is an infinite group.

If we now consider a continuous Galois representation ρ with image in K, a priori, such a representation must have image in R^{\times} because the image must be compact. However the preceding proposition gives us reason to hope that we can do considerably better.

Proposition. Compact subgroups of K^{\times} are subgroups of Λ^{\times} .

Proof. Let G be a compact subgroup of K^{\times} . Let $a \in G$. The closure of the set $\{a^n : n \in \mathbf{Z}\}$ must be compact, which means that v(a) = 0. If we now reduce $\{a^n\}$ modulo P, we get an image that is a compact subgroup of $\mathbf{F}_p(t)$. Since $\mathbf{F}_p(t)$ has the discrete topology, the reduction of $\{a^n\}$ must be a finite subgroup. Hence, the reduction maps not just to $\mathbf{F}_p(t)$, but to \mathbf{F}_p . Let $b = a^{p-1}$, and then $b \equiv 1 \pmod{P}$.

Because P is principal, we can write b = 1 + pr, where $r \in R$. Using the fact that $v_p(\binom{p^k}{m}) = k - v_p(m)$ for $1 \le m \le p^k$, it is simple to show that

$$\lim_{n \to \infty} b^{p^n} = 1.$$

Let c be any element of \mathbf{Z}_p , and write $c = \lim c_n$, where $c_n \in \mathbf{Z}$. The set $\{b^{c_n}\}$ is contained in G, and hence must have a convergent subsequence; however, since $c = \lim c_n$, (*) means that all subsequences must converge to the same limit, which we might as well denote by b^c .

In particular, we may let $c=(1+p^i)^{-1}$, for any positive integer i. The preceding discussion shows that $b^{1/(1+p^i)}$ is an element of K for any positive integer i. Write $b=\frac{f}{g}u$, where f and g are relatively prime, and then we may conclude that $(1+p^i)|v(g)$ for all positive integers i. That, in turn, forces v(g)=0, and then b must be an element of Λ . Since this argument applies to f as well, b is a unit in Λ . Because Λ is integrally closed in K, we see that $a \in \Lambda^{\times}$ as well.

Notice that a key feature of this argument is that K is not complete, though Λ is.

Corollary. Suppose that $\rho : \operatorname{Gal}(\overline{\mathbf{Q}_p}/\mathbf{Q}_p) \to K^{\times}$ is a continuous Galois representation. Then the image of ρ is contained in Λ^{\times} .

Though the above result is already of considerable interest in Hida theory, representations to $GL_2(K)$ are of much more interest. It is tempting to

Conjecture. Suppose that $\rho : \operatorname{Gal}(\overline{\mathbf{Q}_p}/\mathbf{Q}_p) \to \operatorname{GL}_n(K)$ is a continuous Galois representation. Then the image of ρ is conjugate to a subgroup of $\operatorname{GL}_n(\Lambda)$.

Unfortunately, the above methods do not suffice to prove this conjecture. A generalization, using a localization argument, proves only that eigenvalues of a matrix in the image of ρ are units in the integral closure of Λ in an extension of K.

Thanks to Ralph Greenberg for posing this question, and to both Glenn Stevens and Ralph Greenberg for many helpful conversations.

References

 $[1]\,$ Nicolas Bourbaki, $Commutative \ Algebra,$ Springer Verlag, New York, 1989, p. 200.

 $\begin{array}{l} \hbox{Chestnut Hill, MA 02467-3806} \\ E\text{-}\textit{mail address:} \ \ \hbox{gross@bc.edu} \end{array}$