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Abstract. We find an appropriate topology to put on K, the fraction field of the Iwasawa algebra Λ = Zp[[T ]],
so that compact subgroups of K

× are in fact contained in Λ×. This ensures that Galois representations to K
×

have image in Λ×.

Let Λ = Zp[[T ]] be the Iwasawa algebra. Λ is a unique factorization domain. The p-adic Weierstrass
Preparation Theorem says that elements of Λ may be represented as uf , where f is a polynomial and u is a
unit.

Let M = (p, T ) be the maximal ideal of Λ. Topologize Λ so that a base of neighborhoods of 0 is given by
powers of M , and define neighborhoods of other elements of Λ by translation.

Let K be the field of fractions of Λ. The first question to consider is how to topologize K. One somewhat
obvious approach is to say that a set U ⊆ K is open in K precisely when kU ∩Λ is an open subset of Λ for all
k ∈ K×. This definition makes addition and multiplication continuous. Topologized in this way, a compact
subset of GLn(K) which is also a subgroup is conjugate to a subset of GLn(Λ). Unfortunately, there is one
major drawback to this topology.

Proposition. The function f(x) = x−1 is not continuous in this topology.

Proof. There are many ways to see this. Perhaps the simplest is to observe that the sequence an = p + T n

converges to p. However, the sequence a−1
n is closed, since for a fixed k ∈ K×, ka−1

n will be an element of Λ
for only finitely many n. Hence, a−1

n cannot converge to p−1.

We therefore need a different topology on K, and fortunately there is an obvious candidate. If λ ∈ Λ, we
can define v(λ) = n if λ ∈ Mn and λ 6∈ Mn+1 and v(0) = ∞. Krull’s Theorem [1] implies that

⋂

Mn = {0},
and so the function v is well-defined.

Lemma. v is a valuation on Λ.

Proof. Let f, g ∈ Λ. Set v(f) = m and v(g) = n. Obviously, v(f + g) ≥ min(v(f), v(g)), so we need only
show that v(fg) = v(f) + v(g).

Use the Weierstrass Preparation Theorem to write f = u1f
′, g = u2g

′, where u1 and u2 are units and f ′

and g′ are polynomials. Write f ′ =
∑

aiT
i and g′ =

∑

bjT
j. Let vp be the usual p-adic valuation on Zp.

Of those terms in
∑

aiT
i with v(aiT

i) = m, let akT k be the term so that vp(ak) is minimal. (It is easy to
see that there is a unique minimum, because if v(aiT

i) = m, then vp(ai) = m− i.) Similarly, let blT
l be the

term in the second sum minimizing vp(bl) subject to v(blT
l) = n.

If we now consider the coefficient ck+l of T k+l in the product fg = u1u2f
′g′, we see that vp(ck+l) =

vp(ak) + vp(bl). Therefore v(ck+lT
k+l) = m + n, and we finally have v(fg) = m + n.

This lemma in fact is true in considerably greater generality, but the statement does not seem to appear
in the literature in this form.
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Because Λ is a unique factorization domain, we can extend v to K by defining v(f/g) = v(f)− v(g), and
the valuation still is well-defined. Let

R = {k ∈ K : v(k) ≥ 0},

and
P = {k ∈ K : v(k) > 0}.

Notice that R is a discrete valuation ring, and P is the unique maximal ideal. In fact, P is principal, and
we choose p as a generator.

Proposition. R/P ∼= Fp(t).

Proof. Though this fact appears to be well-known to valuation theorists, there is no statement of it in the
number-theoretic literature, so we sketch a proof.

Let k ∈ K be an element with v(k) = 0. We can write k = f
g u, where u ∈ Λ× and f, g ∈ Zp[T ]. Let

v(f) = v(g) = n. Then f/pn and g/pn are elements of Zp[
T
p ]. The reduction modulo P now sends T

p to t, u

to its constant term, and Zp to Fp.

Corollary. R is neither compact nor locally compact.

Proof. Because R/P is infinite, we can cover R with an infinite cover of the form a + P with no finite
subcover. Similarly, any neighborhood of 0 contains P k for some k, and P k/P k+1 is an infinite group.

If we now consider a continuous Galois representation ρ with image in K, a priori, such a representation
must have image in R× because the image must be compact. However the preceding proposition gives us
reason to hope that we can do considerably better.

Proposition. Compact subgroups of K× are subgroups of Λ×.

Proof. Let G be a compact subgroup of K×. Let a ∈ G. The closure of the set {an : n ∈ Z} must be
compact, which means that v(a) = 0. If we now reduce {an} modulo P , we get an image that is a compact
subgroup of Fp(t). Since Fp(t) has the discrete topology, the reduction of {an} must be a finite subgroup.
Hence, the reduction maps not just to Fp(t), but to Fp. Let b = ap−1, and then b ≡ 1 (mod P ).

Because P is principal, we can write b = 1 + pr, where r ∈ R. Using the fact that vp(
(

pk

m

)

) = k − vp(m)

for 1 ≤ m ≤ pk, it is simple to show that

(∗) lim
n→∞

bpn

= 1.

Let c be any element of Zp, and write c = lim cn, where cn ∈ Z. The set {bcn} is contained in G, and
hence must have a convergent subsequence; however, since c = lim cn, (∗) means that all subsequences must
converge to the same limit, which we might as well denote by bc.

In particular, we may let c = (1 + pi)−1, for any positive integer i. The preceding discussion shows that

b1/(1+pi) is an element of K for any positive integer i. Write b = f
g u, where f and g are relatively prime,

and then we may conclude that (1 + pi)|v(g) for all positive integers i. That, in turn, forces v(g) = 0, and
then b must be an element of Λ. Since this argument applies to f as well, b is a unit in Λ. Because Λ is
integrally closed in K, we see that a ∈ Λ× as well.

Notice that a key feature of this argument is that K is not complete, though Λ is.

Corollary. Suppose that ρ : Gal(Qp/Qp) → K× is a continuous Galois representation. Then the image of

ρ is contained in Λ×.

Though the above result is already of considerable interest in Hida theory, representations to GL2(K) are
of much more interest. It is tempting to

Conjecture. Suppose that ρ : Gal(Qp/Qp) → GLn(K) is a continuous Galois representation. Then the

image of ρ is conjugate to a subgroup of GLn(Λ).

Unfortunately, the above methods do not suffice to prove this conjecture. A generalization, using a
localization argument, proves only that eigenvalues of a matrix in the image of ρ are units in the integral
closure of Λ in an extension of K.

Thanks to Ralph Greenberg for posing this question, and to both Glenn Stevens and Ralph Greenberg
for many helpful conversations.
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