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Abstract. We give a quantitative bound for the number of S-integral points on an
elliptic curve over a number field K in terms of the number of primes dividing the
denominator of the j-invariant, the degree [K : Q], and the number of primes in S.

Let K be a number field of degree d and MK the set of places of K. Let E/K
be an elliptic curve with quasi-minimal Weierstrass equation

E : y2 = x3 + Ax + B.

If ∆ = 4A3 + 27B2 is the discriminant of this equation, recall that quasi-minimal
means that |NK/Q(∆)| is minimized subject to the condition that A, B ∈ OK . Let
S ⊂ MK be a finite set of s places containing all the archimedean ones, and denote
the ring of S-integers by OS . Let j be the j-invariant of E.

In [Sil6], Silverman proved that if j is integral, then

#{P ∈ E(K) : x(P ) ∈ OS}

can be bounded in terms of the field K, #S, and the rank of E(K). More generally,
Silverman proved that if the j-invariant is non-integral for at most δ places of K,
then that set can be bounded in terms of the previously mentioned constants and
δ. This is a special case of a conjecture of Lang asserting the existence of such a
bound which is independent of δ. However, Silverman did not explicitly compute
the constants involved.

In this paper, using more explicit methods, we compute the dependence of the
bounds on the various constants. In particular, as a consequence of Proposition 11,
we have the following

Theorem. For elliptic curves E/K of sufficiently large height, the number of S-
integral points is at most 2 · 1011dδ(j)3d(32 · 109)rδ(j)+s. For elliptic curves E
defined over Q of sufficiently large height, the number of S-integral points is at
most 32 · 1011(32 · 109)rδ(j)+s.
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Our method is to first bound the number of points in a set ΓS(ǫ), defined in
terms of local height functions, and then to relate the number of elements in that
set to the set we are interested in counting.

This paper falls into three parts. Propositions 1–5 summarize the necessary
facts about height functions. Propositions 6–8 are various counting results. Propo-
sition 9 counts the size of ΓS(ǫ), Proposition 10 is a technical result, and the final
Proposition combines the previous results to count the number of S-integral points.

We begin with some notation. Let dv = [Kv : Qv]. For a point P ∈ E(K), the
canonical height of P is defined by

ĥK(P ) =
1

2
lim

n→∞

hK(x(2nP ))

4n
,

where hK(k) = log HK(k) and

HK(k) =
∏

v∈MK

max(|k|v, 1).

The absolute canonical height is defined by ĥ(P ) = ĥK(P )/d.

Proposition 1. The canonical height satisfies

(1) ĥ(P ) = 0 if and only if P is a torsion point.

(2) ĥ is a positive definite quadratic form on E(K) ⊗ R.

Proof. These facts are well-known. See, for example, [Sil5], chapter 8.

Proposition 2. Let v ∈ MK . There exists a unique function λ (also denoted λv

or λv,K), λ : E(Kv) \ {0} → R which satisfies:

(1) λ is continuous.
(2)

lim
P→0

(

λ(P ) +
1

2
v(x(P ))

)

=
1

12
v(∆).

(3) Let P, Q ∈ E(Kv) with P, Q, P ± Q 6= 0. Then

λ(P + Q) + λ(P − Q) = 2λ(P ) + 2λ(Q) +
1

6
v(F (P, Q))

where

F (P, Q) =
(x(P ) − x(Q))6

∆
.

The function λ further satisfies
(4) Let L/K be a finite extension, w ∈ ML a place over v, P ∈ E(Kv) \ {0}.

Then
λv,K(P ) = λw,L(P ).

(5) For any σ ∈ Aut(Kv/Q),

λv,K(P ) = λvσ ,Kσ(P σ).

Similarly, for any α ∈ AutKv (E),

λ(P ) = λ(αP ).
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(6) Let m ∈ Z, P ∈ E(Kv), mP 6= 0. Then

λ(mP ) = m2λ(P ) +
1

12
v(fm(P )),

where

fm(P ) = m12
∏

T∈E[m]
T 6=0

(x(P ) − x(T ))6

∆
.

(7)
∑

T∈E[m]
T 6=0

λ(T ) = v(m).

(8) Let P ∈ E(Kv) with mP 6= 0. Then

∑

T∈E[m]

λ(P + T ) = λ(mP ).

(9) For any P ∈ E(K) \ {0},

ĥK(P ) =
∑

v∈MK

dvλv(P ).

Proof. For existence, uniqueness, (1)–(5), and (9), see [Lang], chapters 1, 3, and 4.
To prove (6) for m = 2, let Q → P in (3) and use (2) and the addition formula.
Then (6) can be proven by induction on m using (3) and the classical formula

F (mP, P ) =
fm+1(P )fm−1(P )

fm(P )2
.

(See [Zim].)
The distribution relations (7) and (8) do not seem to be in the literature, though

they appear in an unpublished letter of Tate to Serre (as does (6)), so we briefly
sketch a proof. Using (3), (6), and the definition of fm and F , we have

∑

T∈E[m]

λ(P + T )− λ(mP ) =
∑

T∈E[m]
T 6=0

(

λ(P + T ) − λ(P ) − 1

12
v(F (P, T ))

)

− v(m)

=
∑

T∈E[m]
T 6=0

λ(T ) − v(m).

Therefore, this quantity c(m) does not depend on P , and both (7) and (8) follow
if we can show that c(m) = 0.

We begin by showing that c(2) = 0. In (3), let P and Q be distinct non-zero
two-torsion points. If we add the six choices for (P, Q), we obtain

∑

T∈E[2]
T 6=0

λ(T ) +
1

24

∑

P,Q∈E[2]
P,Q,P−Q6=0

v(F (P, Q)) = 0.
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Now c(2) = 0, because

∆ = 24
∏

P,Q∈E[2]
P,Q,P−Q6=0

(x(P ) − x(Q)).

Next, let m, n ∈ Z with (m, n) = 1. Then E[mn] = E[m] ⊕ E[n], so

λ(mnP ) + c(mn) =
∑

S∈E[m]

∑

T∈E[n]

λ(P + S + T )

= λ(mnP ) + c(m) + m2c(n).

Hence, by symmetry

(m2 − 1)c(n) = (n2 − 1)c(m) if (m, n) = 1.

Now, if m is odd, take n = 2 and use c(2) = 0 to get c(m) = 0. Then for any m,
take n ≥ 3 odd and prime to m to get c(m) = 0.

The preceding proposition gives the formal properties of the local height function

λ. The following proposition gives inequalities for λ and ĥ whose proof depends on
various explicit formulæ for λ, which can be found in [Lang], among other places.

Proposition 3. For v ∈ MK, let

α(v) =

{

1 if v is archimedean,

0 otherwise.

Then λ = λv has the following properties, where the constants are absolute.

(1) Let P ∈ E(Kv) \ {0}. Then

λv(P ) ≥ 1

24
min(0, v(j)) − 3α(v).

Hence, for P ∈ E(K) and any set S ⊂ MK,

ĥK(P ) ≥
∑

v∈S

dvλv(P ) − 1

24
hK(j) − 3d.

(2) Let P, Q ∈ E(Kv) with P, Q, P + Q 6= 0. Then

λv(P + Q) ≥ min(λv(P ), λv(Q)) +
1

8
min(0, v(j)) − 6α(v).

(3) Let P ∈ E(K) be a point of infinite order. Then

ĥ(P ) > (24 · 144 · 972002)−δ(j) max

(

h(j),
1

d
log
∣

∣NK/Q∆E/K

∣

∣ , 1

)

,

where ∆E/K is the minimal discriminant of E/K, and

δ(j) = #M∞
K + #{v ∈ M0

K : v(j) < 0}
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is essentially the number of primes in the denominator of j.
(4) Assume that v has been extended in some fashion to K. Let P ∈ E(K)\{0}.

Then there is a Q ∈ E(K) with mQ = P satisfying

λv(Q) ≥ λv(P ) +
m2

8
min(0, v(j)) − v(m) − 6m2α(v).

(5) Let P, Q ∈ E(Kv) with P, Q, P ± Q 6= 0. Then

2λ(P ) + 2λ(Q) +
1

6
max(0,−v(j)) + 12α(v)

≥ 1

6
max(0,−v(F (P, Q)))

≥ 2λ(P ) − 2λ(Q) +
1

3
min(0, v(j)) − 18α(v)

Hence, for P, Q ∈ E(K) \ {0},

2ĥ(P ) + 2ĥ(Q) +
1

6
h(j) + 12d ≥ h

(

x(P ) − x(Q)

∆1/6

)

≥ 2ĥ(P ) − 2ĥ(Q) − 1

3
h(j) − 18d

(6) Assume that the Weierstrass equation for E with discriminant ∆ has coef-
ficients in OK . Let P ∈ E(K) \ {0}. Then

∣

∣

∣

∣

λv(P ) − 1

2
max(0, v(x(P )))

∣

∣

∣

∣

≤ 1

6
max(0,−v(j)) +

1

12
|v(∆)| + 1.07α(v)

and
∣

∣

∣

∣

ĥ(P ) − 1

2
h(x(P ))

∣

∣

∣

∣

≤ 1

6
h(j) +

1

6
h(∆) + 1.07.

Proof. Assume first that v is archimedean. We begin with (1) and (2) in this case.
Choose an isomorphism E(Kv) ≃ C/(Z+τZ), with the point P corresponding to

u = u1+u2τ . We may take τ in the usual fundamental domain, so that Imτ ≥
√

3/2.
Since we may replace P by −P (because λ(P ) = λ(−P )), we may further suppose
that 0 ≤ u1 ≤ 1 and 0 ≤ u2 ≤ 1/2. If we write q = qτ = e2πiτ and qu = e2πiu, then

|q| ≤ e−π
√

3.
We have

λ(P ) = λ(u) =
1

2
B2(u2)v(q) + v(g0(qu)),

where

B2(t) = t2 − t +
1

6
, 0 ≤ t ≤ 1,

(and B2 is extended to R by periodicity) and

g0(t) = (t − 1)

∞
∏

n=1

(1 − qnt)(1 − qnt−1).



6 ROBERT GROSS AND JOSEPH SILVERMAN

We have

−0.0655 ≤ λ(z) +
1

2
B2(u2) log |qτ | + log |1 − qu| ≤ 0.0711

from [Sil7] and

− log |qτ | ≥ min(v(j), 0) − 2.304

from [H-S].
We also know that B2(u2) ≥ B2(1/2) = − 1

12 . Finally,

v(1 − qu) ≥ − log(

√
3

2
+

3

2
) − log π ≥ −2.01.

Therefore,

λ(P ) ≥ 1

24
min(v(j), 0) − 3.

This proves (1).
To prove (2), let Q correspond to z = z1+z2τ , with 0 ≤ z1, z2 ≤ 1. By symmetry,

we may assume that 0 ≤ u2 ≤ min(z2, 1 − z2). (If this is not true, then switch P
and Q, and then if necessary use −P and −Q instead.) Then, using the above
formula for λ, we have

λ(P + Q) − min(λ(P ), λ(Q)) ≥ 1

2
(B2(u2 + z2) − max(B2(u2), B2(z2))v(qτ ))

+ v(1 − qu+z) − min(v(1 − qu), v(1 − qz)) − 0.4.

We now proceed further. First, we observe that

min
s,t∈R

(B2(s + t) − max(B2(s), B2(t)) = −1

4
.

We also have

|1 − qu+z| ≤ |1 − qz| + |qz||1 − qu| ≤ 2 max(|1 − qz|, |1 − qu|),

because |qz | ≤ 1. Finally, we know that v(qτ ) ≥ min(v(j), 0) − 2.304. Put all of
these together, and we have

1

2
(B2(u2 + z2) − max(B2(u2), B2(z2))v(qτ ))

+v(1 − qu+z) − min(v(1 − qu), v(1 − qz)) − 0.133

≥ 1

8
min(0, v(j)) − 6.

Next, suppose that v is non-archimedean. In proving (1) and (2), we may extend
the ground field, so we may suppose that E has either good or split multiplicative
reduction. Let

E(Kv) ⊃ E0(Kv) ⊃ E1(Kv) ⊃ . . .
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be the usual filtration of E(Kv) (see [Sil5]). For P ∈ E(Kv), let i(P ) be the largest
integer i so that P ∈ Ei(Kv). (If P 6∈ E0(Kv), set i(P ) = 0.) Then from [Lang],
theorems III.4.3 and III.5.1, we have

λ(P ) =
1

2
B2(β(P ))max(0,−v(j)) + i(P )v(π)

where π is a uniformiser at v, and

β : E(Kv) → E(Kv)/E0(Kv) → Q/Z

is a certain homomorphism. Since B2(β) ≥ − 1
12 , this gives (1).

To prove (2), suppose first that either P or Q is in E0(Kv) (suppose P , for
simplicity’s sake). Then β(P+Q) = β(Q), and i(P+Q) ≥ i(Q), so λ(P+Q) ≥ λ(Q).

On the other hand, if P, Q 6∈ E0(Kv), then

λ(P + Q) − min(λ(P ), λ(Q))

≥ 1

2

(

B2(β(P ) + β(Q)) − min{B2(β(P )), B2(β(Q))}
)

max(0,−v(j))

≥ 1

24
min(0, v(j))

which is actually a stronger inequality than that stated in the proposition.
(3) can be proved by combining formulas from [H-S] and [Sil2]. The proof

of lemma 2.2(a) of [H-S] shows that − log |q| ≥ log |j(τ)| − 2.304, and also that

− log |q| ≥ π
√

3 ≥ 5.44; therefore, − log |q| ≥ max(log |j(τ), 7.744) − 2.304. Then
Proposition 2.3 (with ǫ = 1

2 ) says that if max(|α|, |β|) ≤ 1/44, then λv(z) ≥
1
24 max(log |j(τ)|, 7.744).

Turning to [Sil2], this says that in Lemma 2 of [Sil2], if we take

c =
1

24
max(log |j(τ)|, 7.744),

then the δ(c) in Lemma 2 of [Sil2] equals 1
44 . The constant M in Lemma 3 of

[Sil2] then becomes 4 · 452 = 8100. The proof of the Theorem in [Sil2] with C =
1
24 max(log |j(τ)|, 7.744) rather than C = 1, and with R = δ(j), says that

ĥ(nP ) >
1

24

(

1

d
log |NK/Q∆E/K | + max(log |j(τ)|, 7.744)

)

and so (remembering the factor of 1
144 mentioned at the beginning of the proof),

we have

ĥ(P ) ≥ 1

24 · 144
97200−2δ(j) max

(

1

d
log |NK/Q∆E/K |, h(j), 7.744

)

.

To prove (4), we take Q ∈ E(K) satisfying mQ = P so that λ(Q) is maximized.
Then for any T ∈ E[m] \ {0}, we have

λ(Q + T ) = min(λ(Q), λ(Q + T ))

≤ λ(T ) − 1

8
min(0, v(j)) + 6α(v)
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from (2). Hence, from proposition 2, (8) and (7), we have

λ(P ) = λ(Q) +
∑

T∈E[m]
T 6=0

λ(Q + T )

≤ λ(Q) − m2

8
min(0, v(j)) − 6m2α(v) − v(m).

To show (5), begin by recalling that

−1

6
v(F (P, Q)) = 2λ(P ) + 2λ(Q) − λ(P + Q) − λ(P − Q)

≤ 2λ(P ) + 2λ(Q) +
1

12
max(0,−v(j)) − 6α(v).

We also can use (1) to show that

2λ(P ) + 2λ(Q) +
1

6
max(0,−v(j)) + 12α(v) ≥ 0,

and therefore

1

6
max(0,−v(F (P, Q))) ≤ 2λ(P ) + 2λ(Q) +

1

6
max(0,−v(j)) + 12α(v).

The lower bound estimate is only non-trivial if it is positive, and so we may
suppose that

λ(P ) ≥ λ(Q) − 1

6
min(0, v(j)) + 12α(v).

We also have from (2) that

λ(Q) ≥ min(λ(P ± Q), λ(P )) +
1

8
min(0, v(j)) − 6α(v).

If we combine those two, we may conclude that

λ(P ± Q) ≤ λ(Q) − 1

8
min(0, v(j)) + 6α(v).

Then

−1

6
v(F (P, Q)) = 2λ(P ) + 2λ(Q) − λ(P + Q) − λ(P − Q)

≥ 2λ(P ) + 2λ(Q) − 2λ(Q) +
1

4
min(0, v(j)) − 12α(v)

≥ 2λ(P ) + 2λ(Q) +

(

2

24
+

1

4

)

min(0, v(j)) − 18α(v)

= 2λ(P ) + 2λ(Q) +
1

3
min(0, v(j)) − 18α(v).

As for (6), [Sil7] contains the proofs of considerably stronger statements.
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Note that if x ∈ K, then x is S-integral if and only if

∑

v∈S

dv max(0,−v(x)) = hK(x).

We actually prove a stronger result than simply bounding the number of S-integral
points on E. We give a bound depending on ǫ for the number of points P on an
elliptic curve whose x-coordinate x(P ) satisfies

∑

v∈S

dv max(0,−v(x(P ))) ≥ ǫhK(x(P )).

Intuitively, such a point P is v-adically close to 0 for some v ∈ S.
A more intrinsic measure of the v-adic distance to 0 is given by the local height

function λv(P ), so we start by bounding the number of elements in the set

ΓS(ǫ) = {P ∈ E(K) :
∑

v∈S

dvλv(P ) ≥ ǫĥK(P )}.

This bound will be independent of the choice of an equation for E. Then we give
an estimate for the discriminant of a quasi-minimal Weierstrass equation, and use
this to prove our main result.

Set r to be the rank of E. Recall that the equation y2 = x3 + Ax + B with
discriminant ∆ = −16(4A3+27B2) is quasi-minimal if hK(∆) is minimized subject
to A, B ∈ OK .

Let ξ : S → R be a function satisfying ξv ≥ 0 and
∑

v∈S ξv = 1. Let

ΓS(ǫ, ξ) =

{

P ∈ E(K) : P 6= 0 and

λv(P ) +
1

24
max(0,−v(j)) + 3α(v) ≥ ǫξv

dv
ĥK(P ) for all v ∈ S

}

.

Because of proposition 3(1), we know that the left-hand side of this inequality is
always non-negative.

We have yet another notation before we can state our next theorem. For any
integer m > 1, let

ĥ(m)(P ) = min
Q∈E(K)

ĥ(P + mQ).

We need to recall a quantitative version of

Roth’s Theorem. Let F (T ) ∈ K[T ] with degree n. Let α1, . . . , αn be the roots of
F (T ). There are at most 4sc1 elements x ∈ K satisfying both

∏

v∈S

min
1≤i≤n

(‖x − αi‖v, 1) ≤ HK(x)−2.5

h(x) ≥ c2 max(h(α1), h(α2), . . . , h(αn), 1),

where N = [2304 logn] + 1, c1 = N − 1 + 8.5(N − 1) log(5nN(2N)!), and c2 =
28(2N)!.

Proof. See [Gross].
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Proposition 4. Let 1 > ǫ > 0. Let m = [8/
√

ǫ]. Compute the constants c1 and

c2 from Roth’s Theorem with n = 18m2. There are at most 2c1 (16/
√

ǫ)
2s+r

points
P ∈ ΓS(ǫ, ξ) satisfying

ĥ(P ) ≥ 51m2dc2

ǫ
(ĥ(m)(P ) + h(j) + 1).

Proof. Choose a Weierstrass equation for E/K with coordinates x and y and dis-
criminant ∆, and fix a 2-torsion point T ∈ E[2]. Note that the field K(∆1/6, T )
has degree at most 18 over K. For P, Q ∈ E(K) \ {0}, define

φ(P, Q) =
x(P ) − x(Q)

∆1/6
.

We also assume that valuations in K have been extended to K in some fashion.
Let m be as in the statement of the proposition, and write Γ = ΓS(ǫ, ξ). Split Γ

up into (at most) mr+2 subsets according to cosets in E(K)/mE(K). We may then
look at those P ∈ Γ which can be written as P = mP ′ + R for a fixed R. Taking R

of minimal height in its coset, we may assume that ĥ(m)(P ) = ĥ(R). By proposition
3 (4), for each v ∈ S we may choose an R′

v ∈ E(K) so that P = m(P ′ + R′
v) (and

hence mR′
v = R) and

λv(P ′ + R′
v) ≥ λv(P ) +

m2

8
min(0, v(j)) − v(m) − 6m2α(v).

Note that for fixed R, there are only m2 choices for R′
v, so the numbers in the set

{φ(R′
v, T ) : v ∈ S} all satisfy a single equation over K of degree at most 18m2.

Now multiply the above inequality by dv, add over v ∈ S, and use that P ∈ Γ.
We get

(1)
∑

v∈S

dvλv(P ′ + R′
v) ≥ ǫĥK(P ) −

(

1

24
+

m2

8

)

hK(j) − 3d − 6dv(m) − 6m2d.

We next eliminate some trivial cases. If P ′ = 0, then P = R. If P ′ = R′
v for

some v ∈ S, then P = 2R. If P ′ = −R′
v for some v ∈ S, then P = 0, which is

not allowed. Hence for the given R, after discarding two possible points P , we may
assume that P ′ 6= 0 and P ′ 6= ±R′

v for all v ∈ S.
Now suppose that v ∈ S. If R′

v 6= 0, then from proposition 2(2) and proposition
3(3), we have

λv(P
′ + R′

v) ≤ 2λv(P
′) + 2λv(R′

v)

+ v(φ(P ′, R′
v)) −

1

24
min(0, v(j)) + 3α(v),

while if R′
v = 0, then proposition 3(1) gives

λv(P ′ + R′
v) ≤ 2λv(P ′) − 1

24
min(0, v(j)) + 3α(v).
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Multiply by dv, and add these inequalities over v ∈ S, and again use proposition
3(1) to conclude

∑

v∈S

dvλv(P ′ + R′
v) ≤ 2ĥK(P ′) + 2

∑

mR′=R

ĥK(R′)+

∑

v∈S′

dvv(φ(P ′, R′
v)) +

(

2m2 +
3

24

)

hK(j) + 9d + 3m2d,

where the first sum on the right-hand side of the inequality is over all R′ satisfying

mR′ = R and S′ is the set of v ∈ S with R′
v 6= 0. Hence, since ĥ(R) = m2ĥ(R′),

we have

(2)

∑

v∈S

dvλv(P ′ + R′
v) ≤ 2ĥK(P ′) + 2ĥK(R) +

∑

v∈S′

dvv(φ(P ′, R′
v))+

(

2m2 +
3

24

)

hK(j) + 9d + 3m2.

We now can apply Roth’s Theorem to study how well the numbers φ(R′
v , T ) ∈ K

with R′
v 6= 0 can be approximated by the numbers φ(P ′, T ) ∈ K(∆1/6, T ).

We know that with at most 4sc1 exceptions (where c1 is taken from the statement
of Roth’s Theorem), either

∑

v∈S′

dv max(v(φ(P ′, R′
v)), 0) < 2.5hK(φ(P ′, T ))

or
h(φ(P ′, T )) < c2 max

v∈S′

(h(φ(R′
v , T )), 1),

where c2 is again taken from the statement of the theorem.

If we apply Proposition 3(5) to the first inequality, and note that ĥ(T ) = 0, we
have

(3)
∑

v∈S′

dvv(φ(P ′, R′
v)) < 5ĥK(P ′) +

1

2
hK(j) + 30d,

while the same proposition applied to the second inequality gives

2ĥ(P ′) − 1

3
h(j) − 18d < c2

(

2ĥ(R′) +
1

6
h(j) + 12d + 1

)

.

We may use the facts that ĥ(R) = m2ĥ(R′
v) and c2 ≥ 2 to simplify this inequality

to

(4) ĥ(P ′) <
c2

2

(

ĥ(R)

m2
+

1

2
h(j) + 30d + 1

)

.

Now ĥ is positive semi-definite, and P = mP ′ + R, so we have

2m2ĥ(P ′) + 2ĥ(R) ≥ ĥ(P ) ≥ m2

2
ĥ(P ′) − ĥ(R).
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If we combine this with (1), (2), (3), and (4), we get either

ǫĥK(P ) ≤ 7ĥK(P ′) + 2ĥK(R) + 4m2hK(j) + 51dm2

≤ 14

m2
ĥ(P ) + 3ĥK(R) + 4m2hK(j) + 51dm2

(

ǫ − 14

m2

)

≤ 3ĥK(R) + 4m2hK(j) + 51dm2

ĥK(P ) ≤ 4

3ǫ

(

3ĥK(R) + 4m2hK(j) + 51dm2
)

≤ 81m2

ǫ
(ĥK(R) + hK(j) + d)

(using ǫ − 14/m2 > 3ǫ/4), or

ĥ(P ) ≤ 2m2ĥ(P ′) + 2ĥ(R)

≤ c2m
2

(

ĥ(R)

m2
+

1

2
h(j) + 30d + 1

)

+ 2ĥ(R)

≤ (c2 + 2)ĥ(R) +
c2m

2

2
h(j) + 31dc2m

2

≤ 31dc2m
2(ĥ(R) + h(j) + 1)

with at most 4sc1 exceptions.
We also note that φ(P ′, T ) determines P ′ up to ±1.
Note that the number of exceptions must be multiplied by mr+2 to account for

the initial choice of a coset in E(K)/mE(K).

Next, we show that the elements of ΓS(ǫ, ξ) satisfy a type of orthogonality rela-
tion with respect to the canonical height.

Proposition 5. Let P, Q ∈ ΓS(ǫ, ξ) with P 6= Q. Then

ĥ(P − Q) ≥ ǫ min(ĥ(P ), ĥ(Q)) − 5

24
h(j) − 9.

Proof.

ĥK(P − Q) ≥
∑

v∈S

dvλv(P − Q) − 1

24
hK(j) − 3d

≥
∑

v∈S

dv min(λv(P ), λv(Q)) − 1

6
hK(j) − 9d

≥
∑

v∈S

ξvǫ min(ĥK(P ), ĥK(Q)) − 5

24
hK(j) − 9d

which is the desired result since
∑

ξv = 1.

We also need a bound on the torsion subgroup of E(K). For K = Q, there is
Mazur’s deep result [Mazur] that |E(K)tors| ≤ 16, and there are recent generaliza-
tions of this work by Kamienny and Mazur to certain extensions of Q. However,
lacking the general result needed, we content ourselves with the following weaker
but elementary estimate.



S-INTEGER POINTS ON ELLIPTIC CURVES 13

Proposition 6.

|E(K)tors| < 32768(δ(j))3d

where δ(x) is |M∞
K | + |{v ∈ M0

K : v(x) < 0}|, which is essentially the number of
primes in the denominator of x.

Proof. Let p1 = 2, p2 = 3, . . . be the sequence of rational primes, and let v1, v2,
. . . be places of K lying over p1, p2, . . . . By assumption, vn(j) ≥ 0 for two integers
n = n1, n2 with 1 ≤ n ≤ δ(j) + 2, so E has either good or additive reduction at
those vn. Since prime-to-pn torsion injects into the special fibre of the Néron model
at vn, trivial estimates for the number of points over finite fields yields

|E(K)prime−to−pn torsion| ≤ 4NK/Qvn ≤ 4pd
n

(where we have used the fact that for additive reduction, the special fiber has at
most 4 components). Hence,

|E(K)tors| ≤ 16(pn1pn2)
d ≤ 32768(δ(j))3d,

where the last inequality uses the bound pn ≤ 2n log n.

Of course, it is not difficult to greatly improve the bound given in the Proposition,
but we are content to give a bound with an explicit dependence on d and δ(j).

The next tool is essentially the result known as “reduction to simultaneous ap-
proximation” (see [Sil6], for example). There is a slight added complication because
the local height functions might be negative.

Proposition 7.

|ΓS(ǫ)| ≤ 4s max
ξ

∣

∣

∣ΓS

( ǫ

2
, ξ
)∣

∣

∣ ,

where the maximum is taken over all functions ξ : S → R satisfying ξv ≥ 0 and
∑

ξv = 1.

Proof. For P ∈ ΓS(ǫ) with ĥK(P ) > 0, let

φv(P ) = dv

λv(P ) + 1
24 max(0,−v(j)) + 3α(v)

ĥK(P )
.

We know that φv(P ) ≥ 0 by proposition 3(1). Using the definition of ΓS(ǫ), we
have

∑

v∈S

φv(P ) ≥
∑

v∈S dvλv(P )

ĥK(P )
≥ ǫ.

Therefore, if we write [x] for the greatest integer less than or equal to x, we have

∑

v∈S

[

2φv(P )s

ǫ

]

≥
∑

v∈S

(

2φv(P )s

ǫ
− 1

)

≥ s,

so we may choose integers av(P ) satisfying

0 ≤ av(P ) ≤ 2φv(P )s

ǫ
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and
∑

v∈S

av(P ) = s.

If we set ξv = av(P )/s, then P ∈ ΓS(ǫ/2, ξ). Note also that if ĥK(P ) = 0, then
P ∈ ΓS(ǫ/2, ξ) for any choice of ξ. We have therefore shown that ΓS(ǫ) is contained
in the union of ΓS(ǫ/2, ξ) for those ξ which have the form ξv = av/s for some
function a : S → Z satisfying av ≥ 0 and

∑

v∈S av = s. There are exactly
(

2s−1
s−1

)

such functions a, which gives the desired result.

We state the next counting result in an abstract fashion. We have chosen this
method of presentation to clarify the role that the various constants play in the
theorem.

Proposition 8. Let Γ be a finitely generated abelian group of rank r. Let t =
#Γtors. Let h : Γ → R be a “distance function” which satisfies:

(1) h(P ) ≥ 0, and h(P ) = 0 if and only if P ∈ Γtors.
(2) h(qP ) = q2h(P ) for all positive integers q.
(3) h(P ± Q) ≤ c(h(P ) + h(Q)) for a fixed constant c ≥ 1.

Define h(m)(P ) = minQ∈Γ h(P + mQ). Let W be a subset of Γ and consider the
following two conditions on W :

(∗) h(P − Q) ≥ Amin(h(P ), h(Q)) − B for all P, Q ∈ W, P − Q 6∈ Γtors

where A ≤ c.

(∗∗) h(P ) ≤ Ch(m)(P ) + D for all P ∈ W.

Let

λ = min{h(P ) : P ∈ Γ, P 6∈ Γtors}.

Then for any δ > 0,

#{P ∈ W : δ > h(P )} ≤ t

(

(

2cδ

λ

)1/2

+ 1

)r

.

If in addition, W satisfies (∗), then for every δ ≥ γ ≥ 2B/A, we have

#{P ∈ W : δ > h(P ) ≥ γ} ≤ t

(

log
3δ

γ

)(

17c4

A

)r/2

.

If we then ask also that W satisfy (∗∗), then

#{P ∈ W : h(P ) ≥ 2B/A} ≤ t

(

log
6BC + 3AD

2B

)

(

m

(

17c4

A

)1/2
)r

.

Proof. This is essentially proved in [Sil6], lemma 1.2.
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Proposition 9. For any elliptic curve E/K, the set

ΓS(ǫ) = {P ∈ E(K) : P 6= 0 and
∑

v∈S

dvλv(P ) ≥ ǫĥK(P )}

has at most

1011d(δ(j))3d

(

16 · 109

ǫ

)rδ(j)+s

elements.

Proof. We essentially use Proposition 8 to bound the size of ΓS(ǫ, ξ), and then
finish by using Proposition 7.

To apply Proposition 8, begin by noticing that the constant c may be taken to
be 2, and t ≤ 32768δ(j)3d. We have A = ǫ (note that A < c), and B = 5

24h(j) + 9,
from Proposition 5. Using the remaining part of Proposition 8 requires breaking
ΓS(ǫ, ξ) into three pieces. Let

W1 =

{

P ∈ ΓS(ǫ, ξ) : ĥ(P ) <
5

12ǫ
h(j) +

18

ǫ

}

W2 =

{

P ∈ ΓS(ǫ, ξ) :
5

12ǫ
h(j) +

18

ǫ
≤ ĥ(P ) <

51m2dc2

ǫ

(

ĥ(m)(P ) + h(j) + 1
)

}

W3 =

{

P ∈ ΓS(ǫ, ξ) : ĥ(P ) ≥ 51m2dc2

ǫ

(

ĥ(m)(P ) + h(j) + 1
)

}

where m and c2 are taken from Proposition 4. Then we know that n = 18m2 ≤
1200/ǫ, N < 20000/ǫ1/3, and a rough estimate gives c1 < 3.5 · 1010/ǫ1/2 and

c2 < 28 · (40000/ǫ1/3)40000/ǫ1/3

.

Note that W3 is non-empty only if the rank of E is at least 1, so in bounding
the size of that set, we may assume r ≥ 1. Proposition 4 now says that

|W3| ≤ 2c1

(

16√
ǫ

)2s+r

≤ 7 · 1010

(

256

ǫ

)s+rδ(j)

.

Next, for P, Q ∈ W2, P 6= Q, Proposition 5 gives

ĥ(P − Q) ≥ ǫ min(h(P ), h(Q)) − 5

24
h(j) − 9,

while by definition, every P ∈ W2 satisfies

ĥ(P ) <
51m2dc2

ǫ
ĥ(m)(P ) +

51m2dc2

ǫ
(h(j) + 1) .

We now have condition (∗∗) of Proposition 8, if we set

C =
51m2dc2

ǫ
<

4000dc2

ǫ2
and D =

51m2dc2

ǫ
(h(j) + 1) <

4000dc2

ǫ2
(h(j) + 1).
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Therefore,

|W2| ≤ 32768δ(j)3d

(

log
6BC + 3ǫD

2ǫB

)

(

m

(

17 · 16

ǫ

)1/2
)r

≤ 32768δ(j)3d log
50000dc2

ǫ3

(

160

ǫ

)r

≤ 2 · 1010dδ(j)3d

(

160

ǫ

)rδ(j)+s

.

Finally, for the non-torsion points P ∈ E(K), we have the lower bound for h(P )
given by Proposition 3(3), namely

ĥ(P ) > (24 · 144 · 972002)−δ(j) max(h(j), 1).

Hence, we may apply Proposition 8 to

{P ∈ E(K) : ĥ(P ) <
5

24ǫ
h(j) +

18

ǫ
}

(a set which contains W1), we have

|W1| ≤ 32768δ(j)3d





(

(

5

6ǫ
h(j) +

72

ǫ

)(

24 · 144 · 972002

max(h(j), 1)

)δ(j)
)1/2

+ 1





r

≤ 32768δ(j)3d

(

80

ǫ

√
244 · 144 · 972002

)r

≤ 32768δ(j)3d

(

2 · 109

ǫ

)r

.

We may finally combine all of these to get the bound

|ΓS(ǫ, ξ)| ≤ 1011dδ(j)3d

(

2 · 109

ǫ

)s+rδ(j)

.

Now we can obtain the bound

|ΓS(ǫ)| ≤ 1011dδ(j)3d

(

16 · 109

ǫ

)s+rδ(j)

by applying proposition 7.

We are nearly in a position to prove our main result bounding uniformly the
number of S-integral solutions to a quasi-minimal equation for an elliptic curve.
But first, we must study how far a quasi-minimal Weierstrass equation can fail to be
globally minimal. We adopt the notation that ∆1, ∆2, . . . denote the discriminants
of the Weierstrass equations (1), (2), etc.

Proposition 10. A quasi-minimal Weierstrass equation

(1) y2 = x3 + Ax + B

for E/K satisfies

hK(∆1) < log
∣

∣NK/Q∆E/K

∣

∣+ 6 log |DK |+ d(60d2 log 6d)d

(

2√
3

)d(d−1)/2

(RK + 1).
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Proof. The obstruction to finding a Weierstrass equation

(2) y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

which is globally minimal over OK is given by an ideal class AE/K ∈ Pic(OK)

satisfying ∆E/K ∈ A−12
E/K . Furthermore, if a ∈ AE/K is an integral ideal, then there

is an equation (2) with ai ∈ OK and

(∆2) = a12∆E/K .

(See [Sil5]). Minkowski’s theorem now says that we can find an integral ideal a in
the class AE/K satisfying

∣

∣NK/Qa
∣

∣ ≤
(

4

π

)r2
(

d!

dd

)

√

|DK | ≤
√

|DK |.

Hence, there is an equation (2) with ai ∈ OK and

∣

∣NK/Q∆2

∣

∣ ≤ D6
K

∣

∣NK/Q∆E/K

∣

∣ .

Next, the standard substitutions

X = 36x + 3a2
1 + 12a2

Y = 216y + 108a1x + 108a3

transforms the equation (2) into an equation

(3) Y 2 = X3 − 27c4X − 54c6

with c4, c6 ∈ Z[a1, . . . , a6] and
∆3 = 612∆2.

Thus,
∣

∣NK/Q∆3

∣

∣ ≤ 612dD6
K

∣

∣NK/Q∆E/K

∣

∣ .

Finally, replacing X and Y with u−2X and u−3Y respectively for some unit u ∈ O×
K ,

we get a new equation with discriminant ∆4 which satisfies

∆4 = u12∆3.

Therefore, all we need to show is that for any ∆ ∈ OK and any n ≥ 1, there is a
unit u ∈ O×

K so that

hK(un∆) ≤ log
∣

∣NK/Q∆
∣

∣+ γnRK .

This is in [Sil3] Proposition 2(b), save that the second term on the right hand side
of the inequality is not given explicitly. However, from the proof, one sees that it
is less than

n
∑

v∈M∞

K

t
∑

i=1

|v(ui)| = 2n

t
∑

i=1

hK(ui),
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where {u1, . . . , ut} is any basis for O×
K/torsion. Now, following the argument in

[Sil4], equation (1), we can choose a basis u1, . . . , ut so that

t
∏

i=1

h(ui) <

(

2√
3

)t(t−1)/2 (√
t

d

)t

RK ≤
(

2√
3

)d(d−1)/2

RK .

On the other hand, [B-M] shows that

HK(α) ≥ 1 +
1

30d2 log 6d

if α is not a root of unity, and therefore

hK(ui) ≥
1

60d2 log 6d
.

Therefore,
t
∑

i=1

hK(ui) ≤ t(60d2 log 6d)t−1
t
∏

i=1

hK(ui).

Proposition 11. Let
y2 = x3 + Ax + B

be a quasi-minimal Weierstrass equation for an elliptic curve E/K. Let ǫ > 0 be a
constant. Suppose that

max
(

hK(j), log
∣

∣NK/Q∆E/K

∣

∣

)

≥ 6d(60d2 log 6d)d

(

2√
3

)d(d−1)/2

max (RK , log |DK |, 1) .

Then the set

{P ∈ E(K) :
∑

v∈S

dv max(0,−v(x(P ))) ≥ ǫhK(x(P ))}

contains at most

2 · 1011dδ(j)3d

(

32 · 109

ǫ

)rδ(j)+s

points. (If K = Q, then the δ(j)3d factor may be replaced with a simpler constant.)

Remarks. Note that for any given field K, there are only finitely many elliptic
curves E/K with bounded log NK/Q|∆E/K | and hK(j), so the above estimate will
apply for almost every elliptic curve over a fixed field K.

It would be interesting to produce similar bounds to those above that depend
only on d and not DK .

Taking ǫ = 1 gives precisely the S-integral points. Thus,

|{P ∈ E(K) : x(P ) ∈ OS}| ≤ 2 · 1011dδ(j)3d(32 · 109)rδ(j)+s
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for all but finitely many E/K. In particular, we may take K = Q, replace the δ(j)3d

term with 16, and conclude that for all but finitely many elliptic curves E/Q, we
have

|{P ∈ E(Q) : x(P ) ∈ ZS}| ≤ 32 · 1011(32 · 109)rδ(j)+s.

Proof. We assume that E/K satisfies the hypotheses of the proposition. Let

Γx =

{

P ∈ E(K) :
∑

v∈S

dv max(0,−v(x(P ))) ≥ ǫhK(x(P ))

}

.

Let ∆ = −16(4A3 + 27B2) be the discriminant of the equation. For any P ∈ Γx,
we know from Proposition 3(6) that

∑

v∈S

dvλv(P ) ≥ ǫĥK(P ) − 1

3
hK(j) − 1

3
hK(∆) − 1.07d.

Now Proposition 10 and the assumptions in the theorem give
∑

v∈S

dvλv(P ) ≥ ǫĥK(P ) − 1

3
hK(j)

− 1

3



log
∣

∣NK/Q∆E/K

∣

∣+ 6 logDK +

d(60d2 log 6d)d

(

2√
3

)

d(d−1)
2



 (RK + 1)

− 1.07d

≥ ǫĥK(P ) − 4 max(hK(j), log
∣

∣NK/Q∆E/K

∣

∣ , d),

and therefore

Γx ⊆ ΓS(ǫ/2) ∪
{

P ∈ E(K) : ĥ(P ) ≤ 2

ǫ
max

(

h(j),
1

d
log
∣

∣NK/Q∆E/K

∣

∣ , 1

)}

.

But we know that

∣

∣

∣ΓS(
ǫ

2
)
∣

∣

∣ ≤ 1011dδ(j)3d

(

32 · 109

ǫ

)rδ(j)+s

,

and we can apply Proposition 8 to conclude that
∣

∣

∣

∣

{

P ∈ E(K) : ĥ(P ) ≤ 2

ǫ
max

(

h(j),
1

d
log
∣

∣NK/Q∆E/K

∣

∣ , 1

)}∣

∣

∣

∣

≤ 32768δ(j)3d

(

2 · 107

ǫ

)rδ(j)+s

,

and so

|Γx| ≤ 2 · 1011dδ(j)3d

(

32 · 109

ǫ

)rδ(j)+s

.

The factor of δ(j)3d arises solely from the estimate on |E(K)tors|, and so if
K = Q, it may be replaced by 16.

We thank the referee for many helpful comments and suggestions.
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