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A Note on Roth’s Theorem
Robert Gross

Abstract

We give a quantitative version of Roth’s Theorem over an arbitrary number field, similar to that
given by Bombieri and van der Poorten.

Introduction. Let K/Q be a number field, with [K : Q] = d. Let MK be a complete set of inequivalent
absolute values on K, normalized so that the absolute logarithmic height is given by h : K → [0,∞),

h(x) =
∑

v∈ML

max{−v(x), 0}

where L/K is any extension of K containing x. Let S be a finite subset of MK , containing S∞, the
archimedean places, with each place extended to K. Let s be the number of elements in S. Silverman [7]
gives the following statement of Roth’s Theorem:

Theorem A. Let Υ be a finite Gal(K/K)-invariant subset of K. Let α be a map of S to Υ. Let µ > 2 and
M ≥ 0 be constants. Then there are constants c1 and c2, depending only on d, #Υ, and µ, such that there
are at most 4sc1 elements x ∈ K satisfying both of the following conditions:

∑

v∈S

v(x − αv) ≥ µh(x) − M

h(x) ≥ c2 max
v∈S

{h(αv), M, 1}.

Silverman notes, “This type of result is well-known, although this exact formulation does not appear in the
literature.”

In this note, we prove an explicit form of Silverman’s theorem; we will use our result in a future paper
concerning integral points on elliptic curves.

Theorem B. Let µ = 2 + ζ, let ζ′ = ζ/2, µ′ = 2 + ζ′, ζ′′ = min{ζ/4, 3/
√

7}, and µ′′ = 2 + ζ′′. Let

r = #Υ. Let n = [36 log r/ζ′′
2
] + 1 (so that ζ′′ ≥ 6

√
log r/

√
n). Let η = (2n)!−1. Then Theorem A is true

for constants c1 and c2 given by

c1 = n − 1 + (n − 1)
log 5rn/η

log(1 + ζ′′)

and

c2 =
5 log 4

2ηζ′′
.

Because these constants are independent of [K : Q] = d, our result is stronger than Silverman’s statement.
This type of result over Q at the archimedean place is nearly as old as Roth’s original theorem. The first

statement is in Davenport and Roth [2], with the best result using Siegel’s lemma in Mignotte [6]. The best
p-adic statement over Q may be found in Lewis and Mahler [5]. Recently, Bombieri and van der Poorten [1]
have improved the previous estimates by using a strengthened form of Dyson’s Lemma [3] due to Esnault
and Viehweg [4].

For many applications, knowledge of the constants c1 and c2 for a fixed small value of ζ suffices. The
following corollary is often helpful:

Corollary. Let µ = 2.5, and suppose that #Υ = r. Let n = [2304 log r] + 1. Then

c1 = n − 1 + 8.5(n − 1) log(5rn(2n)!)

and

c2 = 28(2n)!.

Preliminaries. Silverman [7] gives the following lemma, an axiomatic form of what is often called “reduction
to simultaneous approximation”:
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Lemma. Let Γ be a set, S a finite set containing s elements, and φ : Γ × S → [0,∞). For every ǫ > 0 and
each function ξ : S → [0, 1], let

Γ(ǫ) = {P ∈ Γ :
∑

v∈S

φ(P, v) ≥ ǫ}

Γ(ǫ, ξ) = {P ∈ Γ : φ(P, v) ≥ ǫξv for all v ∈ S}.

Now fix N ≥ s. Then there is a collection of functions Ξ, where each ξ ∈ Ξ maps S to [0, 1], such that
(1) For each ξ ∈ Ξ,

∑

v∈S ξv = 1.

(2) #Ξ ≤
(

N−1
s−1

)

.

(3) Γ(ǫ) ⊂ ∪ξ∈ΞΓ
(

(1 − s
N )ǫ, ξ

)

.
In particular,

#Γ(ǫ) ≤ 2N sup #Γ
(

(1 − s

N
)ǫ, ξ

)

,

where the supremum is taken over all functions ξ : S → [0, 1] satisfying
∑

ξv = 1.

If we now apply this result with N = 2s, we may dispense with the summation in Roth’s theorem, and deal
with one absolute value at a time, at the cost of using µ′ = 2 + ζ′ rather than µ. In other words, we are
bounding the number of solutions to

|x − α|v ≤ C

H(x)µ′

where M = log C.
We make yet another simplification. For reasons which will shortly become apparent, we wish to deal

with an inequality of the form

|x − α|v ≤ 1

64H(x)µ′′
.

This follows if

64C ≤ H(x)ζ′′

,

which can be insured if

h(x) ≥ 2 log 64

ζ′′
max{1, logC}.

Since this condition is weaker than our later bound on h(x), it does not appear in the statement of Theorem
B.

The Proof. Bombieri and van der Poorten [1] give us the following remarkable result:

Theorem C. Let α1, . . . , αn be elements of a number field K of degree r over the field k, with each αi of
exact degree r over k. Suppose n ≥ c0 log r (where c0 is a sufficiently large constant), and set η such that
0 < η < 1/2n!. Let βi ∈ k be approximations to αi, i = 1, . . . , n such that we have the gap conditions

1

η
log (4H(αi+1)) + log (4H(βi+1)) ≥

4rn

η

(

1

η
log (4H(αi)) + log (4H(βi))

)

.

Then

|αi − βi|v ≥
(

(4H(αi))
1/η4H(βi)

)−2−3
√

log r/
√

n

for at least one i, 1 ≤ i ≤ n.

The authors note at the end of the proof that c0 = 28 is a sufficiently large value. Note that this result does
not depend on [k : Q].
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Following the argument in [1], suppose that

4h(x) ≥ 10 log 4

ηζ′′
max{h(α), 1}.

Then 4h(x) ≥ 5
ηζ′′

(h(α) + log 4), or

4H(x) ≥ (4H(α))5/ηζ′′

.

Let r = #Υ = [K(α) : K]. Let n be the smallest integer so that ζ′′ ≥ 6
√

log r/
√

n; this also implies that
n ≥ 28 log r, because ζ′′ ≤ 3/

√
7.

Recall that we are trying to count solutions of

|α − x|v ≤ 1

64H(x)2+ζ′′
.

If 4H(x) ≥ (4H(α))5/ηζ′′

, then we have

1

64
H(x)−2−ζ′′ ≤ (4H(x))−2−ζ′′ ≤

(

(4H(α))1/η4H(x)
)−2−ζ′′/2

.

Therefore, the solutions satisfying h(x) ≥ c2h(α) must in fact satisfy

|α − x|v ≤
(

(4H(α))1/η4H(x)
)−2−3

√
log r/

√
n

.

Solutions of this inequality can be classified into intervals Ii with

log(4H(x)) ∈
[

log(4H(βi)),
4rn

η

(

1

η
log(4H(α)) + log(4H(βi))

)]

,

where the βi are solutions of
|α − βi|v ≤ H(βi)

−2−ζ′′

chosen inductively to be the minimal solutions of

log (4H(β1)) >
5

ηζ′′
log(4H(α))

and

log (4H(βi+1)) >
4rn

η

(

1

η
log(4H(α)) + log (4H(βi))

)

.

Theorem C says that there are at most n − 1 intervals Ii. Therefore, we have only to count the number of
solutions in each interval.

Let x, y be distinct elements of some interval Ii satisfying

|α − x|v <
1

64H(x)2+ζ′′

|α − y|v <
1

64H(y)2+ζ′′

H(x) < H(y)

Then
1

2H(x)H(y)
≤ |x − y|v ≤ |α − x|v + |α − y|v ≤ 1

32H(x)2+ζ′′
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so that
4H(y) > 4(4H(x))1+ζ′′

.

Therefore, if there are ni solutions in Ii, we have

(4H(βi))
(1+ζ′′)ni−1

≤
(

(4H(α))1/η(4H(βi))
)4rn/η

≤
(

(4H(β1))
ζ′′/5

(4H(βi))
)4rn/η

≤ (4H(βi))
5rn/η .

This implies that

(1 + ζ′′)ni−1 ≤ 5rn

η

and then

ni ≤ 1 +
log 5rn − log η

log(1 + ζ′′)
.

Since there are n − 1 of these sets, the result follows.
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