A Note on Roth's Theorem
 Robert Gross
 Abstract

We give a quantitative version of Roth's Theorem over an arbitrary number field, similar to that given by Bombieri and van der Poorten.

Introduction. Let K / \mathbf{Q} be a number field, with $[K: \mathbf{Q}]=d$. Let M_{K} be a complete set of inequivalent absolute values on K, normalized so that the absolute logarithmic height is given by $h: \bar{K} \rightarrow[0, \infty)$,

$$
h(x)=\sum_{v \in M_{L}} \max \{-v(x), 0\}
$$

where L / K is any extension of K containing x. Let S be a finite subset of M_{K}, containing S_{∞}, the archimedean places, with each place extended to \bar{K}. Let s be the number of elements in S. Silverman [7] gives the following statement of Roth's Theorem:
Theorem A. Let Υ be a finite $\operatorname{Gal}(\bar{K} / K)$-invariant subset of \bar{K}. Let α be a map of S to Υ. Let $\mu>2$ and $M \geq 0$ be constants. Then there are constants c_{1} and c_{2}, depending only on d, $\# \Upsilon$, and μ, such that there are at most $4^{s} c_{1}$ elements $x \in K$ satisfying both of the following conditions:

$$
\begin{aligned}
\sum_{v \in S} v\left(x-\alpha_{v}\right) & \geq \mu h(x)-M \\
h(x) & \geq c_{2} \max _{v \in S}\left\{h\left(\alpha_{v}\right), M, 1\right\}
\end{aligned}
$$

Silverman notes, "This type of result is well-known, although this exact formulation does not appear in the literature."

In this note, we prove an explicit form of Silverman's theorem; we will use our result in a future paper concerning integral points on elliptic curves.
Theorem B. Let $\mu=2+\zeta$, let $\zeta^{\prime}=\zeta / 2$, $\mu^{\prime}=2+\zeta^{\prime}, \zeta^{\prime \prime}=\min \{\zeta / 4,3 / \sqrt{7}\}$, and $\mu^{\prime \prime}=2+\zeta^{\prime \prime}$. Let $r=\# \Upsilon$. Let $n=\left[36 \log r / \zeta^{\prime \prime 2}\right]+1$ (so that $\zeta^{\prime \prime} \geq 6 \sqrt{\log r} / \sqrt{n}$). Let $\eta=(2 n)!^{-1}$. Then Theorem A is true for constants c_{1} and c_{2} given by

$$
c_{1}=n-1+(n-1) \frac{\log 5 r n / \eta}{\log \left(1+\zeta^{\prime \prime}\right)}
$$

and

$$
c_{2}=\frac{5 \log 4}{2 \eta \zeta^{\prime \prime}}
$$

Because these constants are independent of $[K: \mathbf{Q}]=d$, our result is stronger than Silverman's statement.
This type of result over \mathbf{Q} at the archimedean place is nearly as old as Roth's original theorem. The first statement is in Davenport and Roth [2], with the best result using Siegel's lemma in Mignotte [6]. The best p-adic statement over \mathbf{Q} may be found in Lewis and Mahler [5]. Recently, Bombieri and van der Poorten [1] have improved the previous estimates by using a strengthened form of Dyson's Lemma [3] due to Esnault and Viehweg [4].

For many applications, knowledge of the constants c_{1} and c_{2} for a fixed small value of ζ suffices. The following corollary is often helpful:
Corollary. Let $\mu=2.5$, and suppose that $\# \Upsilon=r$. Let $n=[2304 \log r]+1$. Then

$$
c_{1}=n-1+8.5(n-1) \log (5 r n(2 n)!)
$$

and

$$
c_{2}=28(2 n)!
$$

Preliminaries. Silverman [7] gives the following lemma, an axiomatic form of what is often called "reduction to simultaneous approximation":

Lemma. Let Γ be a set, S a finite set containing s elements, and $\phi: \Gamma \times S \rightarrow[0, \infty)$. For every $\epsilon>0$ and each function $\xi: S \rightarrow[0,1]$, let

$$
\begin{aligned}
\Gamma(\epsilon) & =\left\{P \in \Gamma: \sum_{v \in S} \phi(P, v) \geq \epsilon\right\} \\
\Gamma(\epsilon, \xi) & =\left\{P \in \Gamma: \phi(P, v) \geq \epsilon \xi_{v} \text { for all } v \in S\right\}
\end{aligned}
$$

Now fix $N \geq s$. Then there is a collection of functions Ξ, where each $\xi \in \Xi$ maps S to $[0,1]$, such that
(1) For each $\xi \in \Xi, \sum_{v \in S} \xi_{v}=1$.
(2) $\# \Xi \leq\binom{ N-1}{s-1}$.
(3) $\Gamma(\epsilon) \subset \cup_{\xi \in \Xi} \Gamma\left(\left(1-\frac{s}{N}\right) \epsilon, \xi\right)$.

In particular,

$$
\# \Gamma(\epsilon) \leq 2^{N} \sup \# \Gamma\left(\left(1-\frac{s}{N}\right) \epsilon, \xi\right)
$$

where the supremum is taken over all functions $\xi: S \rightarrow[0,1]$ satisfying $\sum \xi_{v}=1$.
If we now apply this result with $N=2 s$, we may dispense with the summation in Roth's theorem, and deal with one absolute value at a time, at the cost of using $\mu^{\prime}=2+\zeta^{\prime}$ rather than μ. In other words, we are bounding the number of solutions to

$$
|x-\alpha|_{v} \leq \frac{C}{H(x)^{\mu^{\prime}}}
$$

where $M=\log C$.
We make yet another simplification. For reasons which will shortly become apparent, we wish to deal with an inequality of the form

$$
|x-\alpha|_{v} \leq \frac{1}{64 H(x)^{\mu^{\prime \prime}}}
$$

This follows if

$$
64 C \leq H(x)^{\zeta^{\prime \prime}}
$$

which can be insured if

$$
h(x) \geq \frac{2 \log 64}{\zeta^{\prime \prime}} \max \{1, \log C\}
$$

Since this condition is weaker than our later bound on $h(x)$, it does not appear in the statement of Theorem B.

The Proof. Bombieri and van der Poorten [1] give us the following remarkable result:
Theorem C. Let $\alpha_{1}, \ldots, \alpha_{n}$ be elements of a number field K of degree r over the field k, with each α_{i} of exact degree r over k. Suppose $n \geq c_{0} \log r$ (where c_{0} is a sufficiently large constant), and set η such that $0<\eta<1 / 2 n!$. Let $\beta_{i} \in k$ be approximations to $\alpha_{i}, i=1, \ldots, n$ such that we have the gap conditions

$$
\frac{1}{\eta} \log \left(4 H\left(\alpha_{i+1}\right)\right)+\log \left(4 H\left(\beta_{i+1}\right)\right) \geq \frac{4 r n}{\eta}\left(\frac{1}{\eta} \log \left(4 H\left(\alpha_{i}\right)\right)+\log \left(4 H\left(\beta_{i}\right)\right)\right)
$$

Then

$$
\left|\alpha_{i}-\beta_{i}\right|_{v} \geq\left(\left(4 H\left(\alpha_{i}\right)\right)^{1 / \eta} 4 H\left(\beta_{i}\right)\right)^{-2-3 \sqrt{\log r} / \sqrt{n}}
$$

for at least one $i, 1 \leq i \leq n$.
The authors note at the end of the proof that $c_{0}=28$ is a sufficiently large value. Note that this result does not depend on $[k: \mathbf{Q}]$.

A Note on Roth's Theorem

Following the argument in [1], suppose that

$$
4 h(x) \geq \frac{10 \log 4}{\eta \zeta^{\prime \prime}} \max \{h(\alpha), 1\}
$$

Then $4 h(x) \geq \frac{5}{\eta \zeta^{\prime \prime}}(h(\alpha)+\log 4)$, or

$$
4 H(x) \geq(4 H(\alpha))^{5 / \eta \zeta^{\prime \prime}}
$$

Let $r=\# \Upsilon=[K(\alpha): K]$. Let n be the smallest integer so that $\zeta^{\prime \prime} \geq 6 \sqrt{\log r} / \sqrt{n}$; this also implies that $n \geq 28 \log r$, because $\zeta^{\prime \prime} \leq 3 / \sqrt{7}$.

Recall that we are trying to count solutions of

$$
|\alpha-x|_{v} \leq \frac{1}{64 H(x)^{2+\zeta^{\prime \prime}}}
$$

If $4 H(x) \geq(4 H(\alpha))^{5 / \eta \zeta^{\prime \prime}}$, then we have

$$
\frac{1}{64} H(x)^{-2-\zeta^{\prime \prime}} \leq(4 H(x))^{-2-\zeta^{\prime \prime}} \leq\left((4 H(\alpha))^{1 / \eta} 4 H(x)\right)^{-2-\zeta^{\prime \prime} / 2}
$$

Therefore, the solutions satisfying $h(x) \geq c_{2} h(\alpha)$ must in fact satisfy

$$
|\alpha-x|_{v} \leq\left((4 H(\alpha))^{1 / \eta} 4 H(x)\right)^{-2-3 \sqrt{\log r} / \sqrt{n}}
$$

Solutions of this inequality can be classified into intervals I_{i} with

$$
\log (4 H(x)) \in\left[\log \left(4 H\left(\beta_{i}\right)\right), \frac{4 r n}{\eta}\left(\frac{1}{\eta} \log (4 H(\alpha))+\log \left(4 H\left(\beta_{i}\right)\right)\right)\right]
$$

where the β_{i} are solutions of

$$
\left|\alpha-\beta_{i}\right|_{v} \leq H\left(\beta_{i}\right)^{-2-\zeta^{\prime \prime}}
$$

chosen inductively to be the minimal solutions of

$$
\log \left(4 H\left(\beta_{1}\right)\right)>\frac{5}{\eta \zeta^{\prime \prime}} \log (4 H(\alpha))
$$

and

$$
\log \left(4 H\left(\beta_{i+1}\right)\right)>\frac{4 r n}{\eta}\left(\frac{1}{\eta} \log (4 H(\alpha))+\log \left(4 H\left(\beta_{i}\right)\right)\right)
$$

Theorem C says that there are at most $n-1$ intervals I_{i}. Therefore, we have only to count the number of solutions in each interval.

Let x, y be distinct elements of some interval I_{i} satisfying

$$
\begin{aligned}
|\alpha-x|_{v} & <\frac{1}{64 H(x)^{2+\zeta^{\prime \prime}}} \\
|\alpha-y|_{v} & <\frac{1}{64 H(y)^{2+\zeta^{\prime \prime}}} \\
H(x) & <H(y)
\end{aligned}
$$

Then

$$
\frac{1}{2 H(x) H(y)} \leq|x-y|_{v} \leq|\alpha-x|_{v}+|\alpha-y|_{v} \leq \frac{1}{32 H(x)^{2+\zeta^{\prime \prime}}}
$$

so that

$$
4 H(y)>4(4 H(x))^{1+\zeta^{\prime \prime}}
$$

Therefore, if there are n_{i} solutions in I_{i}, we have

$$
\begin{aligned}
\left(4 H\left(\beta_{i}\right)\right)^{\left(1+\zeta^{\prime \prime}\right)^{n_{i}-1}} & \leq\left((4 H(\alpha))^{1 / \eta}\left(4 H\left(\beta_{i}\right)\right)\right)^{4 r n / \eta} \\
& \leq\left(\left(4 H\left(\beta_{1}\right)\right)^{\zeta^{\prime \prime} / 5}\left(4 H\left(\beta_{i}\right)\right)\right)^{4 r n / \eta} \\
& \leq\left(4 H\left(\beta_{i}\right)\right)^{5 r n / \eta} .
\end{aligned}
$$

This implies that

$$
\left(1+\zeta^{\prime \prime}\right)^{n_{i}-1} \leq \frac{5 r n}{\eta}
$$

and then

$$
n_{i} \leq 1+\frac{\log 5 r n-\log \eta}{\log \left(1+\zeta^{\prime \prime}\right)} .
$$

Since there are $n-1$ of these sets, the result follows.

Department of Mathematics, Boston College, Chestnut Hill, MA 02167

Bibliography

1. Bombieri, E., A. J. van der Poorten. Some quantitative results related to Roth's Theorem. J. Australian Math. Soc. A 45 (1988), 233-248.
2. Davenport, H., K. Roth. Rational approximations to algebraic numbers. Mathematika 2 (1955), 160167.
3. Dyson, Freeman. The Approximation to Algebraic Numbers by Rationals. Acta Math. 79 (1947), 225240.
4. Esnault, Hélène, Eckart Viehweg. Dyson's Lemma for polynomials in several variables (and the theorem of Roth). Invent. Math 78 (1984), 445-490.
5. Lewis, D.J., K. Mahler. On the representation of integers by binary forms. Acta Arith. 6 (1961), 333363.
6. Mignotte, Maurice. Quelques remarques sur l'approximation rationelle de nombres algébriques. J. reine angew. Math. 268/269 (1974), 341-347.
7. Silverman, Joseph. A Quantitative Version of Siegel's Theorem: integral points on elliptic curves and Catalan curves. J. reine angew. Math. 378 (1987), 60-100.
