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A Note on Roth’s Theorem
Robert Gross

Abstract

We give a quantitative version of Roth’s Theorem over an arbitrary number field, similar to that
given by Bombieri and van der Poorten.

Introduction. Let K/Q be a number field, with [K : Q] = d. Let Mk be a complete set of inequivalent
absolute values on K, normalized so that the absolute logarithmic height is given by h : K — [0, 00),

h(z) = Y max{—v(z),0}
veEM],
where L/K is any extension of K containing z. Let S be a finite subset of M, containing Seo, the
archimedean places, with each place extended to K. Let s be the number of elements in S. Silverman [7]
gives the following statement of Roth’s Theorem:

Theorem A. Let Y be a finite Gal(K /K )-invariant subset of K. Let a be a map of S to Y. Let u > 2 and
M > 0 be constants. Then there are constants ¢y and co, depending only on d, #7Y, and u, such that there
are at most 4°cy elements x € K satisfying both of the following conditions:

Zv(:z: —ay) > ph(z) — M

vES
h(zx) > co mag({h(av), M, 1}.
ve

Silverman notes, “This type of result is well-known, although this exact formulation does not appear in the
literature.”

In this note, we prove an explicit form of Silverman’s theorem; we will use our result in a future paper
concerning integral points on elliptic curves.

Theorem B. Let = 2+, let ¢/ = (/2, ¢/ = 2+ ¢, ¢" = min{¢/4,3/\/7}, and p/ = 2+ ¢". Let
r=#Y. Let n = [36logr/C"*] + 1 (so that (" > 6y/logr/\/n). Let n = (2n)!"1. Then Theorem A is true
for constants ¢y and co given by

log 5rn/n

C1 :’I’L—l'i‘(n—l)m

and
_ 5log4
Co = 277<N .
Because these constants are independent of [K : Q] = d, our result is stronger than Silverman’s statement.
This type of result over Q at the archimedean place is nearly as old as Roth’s original theorem. The first
statement is in Davenport and Roth [2], with the best result using Siegel’s lemma in Mignotte [6]. The best
p-adic statement over Q may be found in Lewis and Mahler [5]. Recently, Bombieri and van der Poorten [1]
have improved the previous estimates by using a strengthened form of Dyson’s Lemma [3] due to Esnault
and Viehweg [4].
For many applications, knowledge of the constants c; and cz for a fixed small value of ¢ suffices. The
following corollary is often helpful:

Corollary. Let u = 2.5, and suppose that #Y = r. Let n = [2304logr] + 1. Then
c1 =n—148.5(n—1)log(5rn(2n)!)

and
ca = 28(2n)!.

Preliminaries. Silverman [7] gives the following lemma, an axiomatic form of what is often called “reduction
to simultaneous approximation”:
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Lemma. Let T be a set, S a finite set containing s elements, and ¢ : T' x S — [0, 00). For every ¢ > 0 and
each function £ : S — [0, 1], let

T(e)={PeT:> ¢(Pv)=> e}

vES
T(e,§) ={P €T : ¢p(P,v) > €&, for all v € S}.

Now fix N > s. Then there is a collection of functions =, where each £ € = maps S to [0, 1], such that
(1) Foreach{ € B, ) & = 1.

2) #=< (7).

(3) T(€) C Ugezl (1 — £)e,€)

In particular,

#0(e) < 2V sup #1 (1= 1)e.€) -
where the supremum is taken over all functions § : S — [0, 1] satisfying > &, = 1.

If we now apply this result with N = 2s, we may dispense with the summation in Roth’s theorem, and deal
with one absolute value at a time, at the cost of using p/ = 2 + (' rather than p. In other words, we are
bounding the number of solutions to

2~ aly < <
T—a
YT H(x)W
where M = log C.
We make yet another simplification. For reasons which will shortly become apparent, we wish to deal
with an inequality of the form

1
- v < "
v =l < S
This follows if
64C < H(z)<",
which can be insured if 5 log 64
h(z) > 22822 ax{1,log C}.

C/I

Since this condition is weaker than our later bound on h(x), it does not appear in the statement of Theorem
B.

The Proof. Bombieri and van der Poorten [1] give us the following remarkable result:

Theorem C. Let ay,...,qa, be elements of a number field K of degree r over the field k, with each «; of
exact degree r over k. Suppose n > cologr (where ¢ is a sufficiently large constant), and set n such that
0 <n<1/2n!. Let 5; € k be approximations to «;, i = 1,...,n such that we have the gap conditions

4rn

L log (4 (a51)) + log (4H (31)) > 22" (% log (4H(a,) + log <4H<@->>) .

Then

lovi — Bilo > ((4H(ai))1/n4H(ﬁi))7273\/@/\/5

for at least one i, 1 <i < n.

The authors note at the end of the proof that ¢y = 28 is a sufficiently large value. Note that this result does
not depend on [k : Q].
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Following the argument in [1], suppose that

10log4
4h(x) > 0log

=z e max{h(a),1}.

Then 4h(z) > n?” (h(a) 4 log4), or
AH (z) > (4H (2))>/™¢" .

Let r = #Y = [K(«a) : K]. Let n be the smallest integer so that ¢ > 6v/logr/y/n; this also implies that
n > 28logr, because (" < 3//7.
Recall that we are trying to count solutions of

1
64H (2)2+<"

o — x|, <

If 4H (x) > (4H(a))>/"¢" | then we have

CH(@) P < (@) < () aE @)

Therefore, the solutions satisfying h(z) > coh(a) must in fact satisfy

la — x|, < ((4H(Q))1/"4H(I))_2_3\/@/ﬁ'

Solutions of this inequality can be classified into intervals I; with

4rn

1
log(4H (z)) € [log(élH(ﬁi)), e (5 log(4H (a)) + 10g(4H(ﬁi)))] ,
where the (; are solutions of B
la = Bilo < H(B;) >¢
chosen inductively to be the minimal solutions of

)
77<H

log (4H (1)) > — log(4H (cv))

and

log (4H (1)) > 2 (% log(4H () + log <4H<ﬁi>>) |

Theorem C says that there are at most n — 1 intervals I;. Therefore, we have only to count the number of
solutions in each interval.
Let x,y be distinct elements of some interval I; satisfying

1
o= oo < SR
o~ 3l < sz
& = Ylv YT N

YIv S GaH ()7
H(z) < H(y)

Then

<lz -yl <|la—zfy +]a—yl, <

1
2H (z)H (y) 32H (z)*+¢”
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so that

AH (y) > 4(4H ()<

Therefore, if there are n; solutions in I;, we have

1ng— 4rn/
(r () T < (B @) aE @)
1’ 4rn/n
< ((@H B aH(B)
< (4H(5:))""".
This implies that
n
and then
. n log 5rn — logn
T log(1 +¢")
Since there are n — 1 of these sets, the result follows. O
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