Ox Appendices

Jurgen A. Doornik

Ox version 3, June 2001

Contents

Al Extending Ox 1
Al.1l Introduction. 1
Al.2 Adding C/Ct++ code: a simple dynamic link library 2

Al1.2.1 Dynamic link library and searchpaths 5
Al1.3 Dynamic link libraries on Unix platforms 5
Al.4 Adding C/Ct+ code: returning values in arguments 6
Al1.5 Calling Ox-coded functionsfromC. 8
Al.6 Adding a user-friendly interface with Visuaka-. 10
Al.7 Adding a user-friendly interface with Visual Basic 16
Al1.7.1 Calling the Ox DLL from VisualBasic 16
Al1.7.2 The RanApp examplein Visual Basic 18
Al1.8 LinkingFortrancode 20
A1.9 Oxfunctionsummary. 21
Al1.10 Macrosto acCeSVALUES 36
Al.11 Ox exported mathematics functions. 38
A1.11.1MATRIX andVECTORtypes 38
Al1.11.2 Exported matrix functions. 40
Al1.11.3 Matrix functionreference 44
A2 Modelbase and OxPack 66
0xPackDialog . . « « v v v e e e e e e e 69
OxPackGetData v v v v v i e e e e 70
Modelbase::ReceiveData 70
Modelbase: :ReceiveDialog 71
Modelbase::ReceiveModel 71
Modelbase::SendDialog. v v v v v v e 72
Modelbase: :SendFunctions 72
Modelbase::SendMenu v v v v v e e 73
Modelbase::SendMethods 74
Modelbase::SendResults 74
Modelbase: :SendSpecials v v 74
Modelbase: :SendVarStatus 74
A2.1 Adding support for a Batch language 75

\Y

Vi CONTENTS
Modelbase::Batch 75
Modelbase::BatchMethod 76
Modelbase: :BatchVarStatus 77
Modelbase: :GetBatchModelSettings 77
A3 Using OxGauss 78
A3.1 Introduction. 78
A3.2 Running OxGauss programs from the commandline 78
A3.3 Running OxGauss programs from GiveWin 79
A3.4 Calling OxGaussfromOX. 79
A3.5 Howdoesitwork? 80
A3.6 Somelargeprojects e 80
A3.6.1 DPD98forGauss 81
A3.6.2 BACC2001 i 82
A3.7 Known limitations 82
A4 OxGauss Function Summary 84
A5 OxGauss Language Reference 107
A5.1 Lexicalconventions. 107
A5.1.1 Tokens. 107
A5.1.2 Comment 107
A5.1.3 Space 107
A5.2 ldentifiers 107
A5.2.1 Keywords 108
A53 Constants 108
A5.3.1 Integerconstants 108
A5.3.2 Characterconstafits. 108
A5.3.3 Doubleconstants 108
A5.3.4 Matrixconstants. L. 109
A5.3.5 Stringconstants L. 109
A5.3.6 Constantexpression 110
A5.4 Objects 110
A5.4.1 Types 110
A5.4.1.1 Typeconversion 111
A5.4.2 Lvalue 111
A5.5 OxGaussProgram 111
A5.6 Externaldeclarations 111
A5.6.1 Externalstatement 112
A5.6.2 Declarestatement 112
A5.6.3 Function (procedure, fn, keyword) definitions 113
A5.6.4 external-statement-list. 115

CONTENTS

Vii

A5.7

A5.8

A5.9

Statements
A5.7.1 Assignmentstatements
A5.7.2 Selectionstatements.
A5.7.3 lterationstatements
A5.7.4 Callstatements
A5.7.5 Jumpandpopstatements
A5.7.6 Command statements
A5.7.6.1 print andformat command
A5.7.6.2 output command
Expressions
A5.8.1 Primary expressions,
A5.8.2 Postfixexpressions
A5.8.2.1 Indexing vector and arraytypes
A5.8.2.2 Transpose v i i
A5.8.2.3 Factorial
A5.8.3 Powerexpressions.
A5.8.4 Unaryexpressions.
A5.8.5 Multiplicative expressions.
A5.8.6 Additiveexpressions
A5.8.7 Moduloexpressions.
A5.8.8 Concatenationexpressions
A5.8.9 Dot-relational expressions
A5.8.9.1 Logical dot-NOT expressions
A5.8.10 Logical dot-AND expressions
A5.8.11 Logical dot-OR expressions
A5.8.12 Logical dot-XOR expressions..
A5.8.13 Logical dot-EQV expressions
A5.8.14 Relational expressions
A5.8.15 Logical-NOT expressions
A5.8.16 Logical-AND expressions
A5.8.17 Logical-ORexpressions.
A5.8.18 Logical-XOR expressions
A5.8.19 Logical-EQVexpressions
Ab5.8.20 Assignmentexpressions
A5.8.21 Constantexpressions
Preprocessing
A5.9.1 Fileinclusion
A5.9.2 Conditional compilation
A5.9.3 Constantdefinition.

Viii CONTENTS

A6 Comparing Gauss and Ox syntax

A6.1 Introduction.

AB.2 ComparisSono e e
A6.2.1 Comment
A6.2.2 Programentry
A6.2.3 Caseandsymbolnames.
AB.2.4 Types
A6.2.5 Matrixindexing
AB.2.6 Arrays
A6.2.7 Declarationandconstants
A6.2.8 Expressions
A6.2.9 Operators
A6.2.10 Loopstatementso
A6.2.11 Conditional statements
A6.2.12 Printing
A6.2.13 Functions
A6.2.14 String manipulation L.
A6.2.15 Inputand Output.

AB.3 G20X

A7 Random Number Generators
A7.1 Modified Park & Miller generator.
A7.2 Marsaglia'sgenerator
A7.3 LEcuyersgenerator

References

Subject Index

131
131
131
131
131
131
132
132
132
133
133
134
134
135
135
135
136
136
136

137

137
137
138

139

140

Appendix Al
Extending Ox

Al.1 Introduction

Ox is an open system to which you can add functions written in other languages. It
is also possible to control Ox from another programming environment such as Visual
C++ or Visual Basic. Extending Ox requires an understanding of the innards of Ox,
a decent knowledge of C, as well as the right tools. You also need a version of Ox
with developer support. In addition, extending Ox is simpler on some platforms than
others. Thus, it is unavoidable that writing Ox extensions is somewhat more complex
than writing plain Ox code. However, there could be reasons for extending Ox, e.g.
when you need the speed of raw C code (but make sure that the function takes up a
significant part of the time it takes to run the program and that it actually will be a lot
faster in C than in Ox!), when code is already available in e.g. Fortran, or to add a
user-friendly interface. This chapter gives many examples, which could provide a start
for your coding effort.

When you write your own C functions to link to Ox, memory management inside
the C code is your responsibility. So care is required: any errors can bring down the Ox
program, or, worse, lead to erroneous outcomes.

Although this chapter is tailored towards producing extensions under the Windows
platform, most of it is pertinent to other platforms. Ox supports dynamic linking on
most platforms. Under Unix, a dynamic link library has the extension (s1 on
HPUX), under Windows d11.

The penultimate section in this chapter documents the C function available to inter-
face with Ox. The last section documents the C mathematical functions exported by the
Ox DLL. Any program could use Ox as a function library by making direct calls to the
Ox DLL.

The required header files are in the\dev directory, together with some library
files which can be used with Microsoft VisuatG-. Subdirectories give platform spe-
cific examples. The main header file to use in your-€#Ccode isoxexport . h:

1

2 Appendix A1 Extending Ox

dependencies afxexport.h

jdsystem.h platform and compiler specific defines
jdtypes.h basic types and constants
jdmatrix.h basic matrix services

jdmath.h mathematical and statistical functions
oxtypes.h basic Ox constants and types

The remaining sections all give examples on extending Ox. For the Windows plat-
form the sample code is in:

purpose ox/ directory section
calling functions from the Ox DLL dev/windows/threes Al.2
a simple example of linking C code dev/windows/threes Al.2
returning values in arguments Al4
calling Ox functions from C dev/windows/callback Al.5
writing a Ct++ interface wrapper dev/windows/ranapp Al.6
writing a Visual Basic interface dev/windows/vb/ranapp Al.7
linking Fortran code dev/windows/fortran Al.8
linking a whole Fortran library packages/quadpkd Al1.8

For Unix there is only the threes example. The remaining windows code is easily adap-
ted for Unix platforms.

Al.2 Adding C/C++ code: a simple dynamic link library

In this section we shall write a function call&drees, which creates a matrix of threes
(cf. the library functionones). The first argument is the number of rows, the second
the number of columns. The C source code islirees. c:
... ox/dev/windows/threes/threes.c
#include "oxexport.h"

void O0XCALL FnThrees(OxVALUE *rtn, OxVALUE *pv, int cArg)
{

int i, j, c, r;
0xLibCheckType (0OX_INT, pv, 0, 1);
r = OxInt(pv, 0);
c = OxInt(pv, 1);
OxLibValMatMalloc(rtn, r, c);
for (i = 0; i < r; i++)
for (j = 0; j < c; j++)
O0xMat (rtn, 0)[i][j] = 3;

e Theoxexport.h header file defines all types and functions required to link to

Al.2 Adding C/G+ code: a simple dynamic link library 3

OxX.
o All functions have the same format:

— DXCALL defines the calling convention;

— rtnis the return value of the function. It is a pointer to@VALUE which
is the container for any Ox variable. On input, it is an inte@&r{NT) of
value 0. If the function returns a value, it should be storetitin.

— pvis an array okArg 0xVALUES, holding the actual arguments to the func-
tion.

— cArg is the number of arguments used in the function call. Unless the func-
tion has a variable number of arguments, there is no need to reference this
value.

o [f the function is written in G-+ instead of C, it must be declared as:

extern "C" void OXCALL FnThrees
(OxVALUE #*rtn, OxVALUE #*pv, int cArg)

e First, we check whether the arguments are of §RANT (we know that there are
two arguments, which have index 0 and Ipi). The call to0xLibCheckType
testspv (the function arguments) from index O to index 1 for tyj¥e INT.

Arguments must be checked for type before being accessed. Make
sure there is a call tdxLibCheckType for each argument (unless
you inspect the arguments ‘manually’).

In this case, a double would also be valid, but automatically converted to an
integer by thedxLibCheckType function. Any other argument type would result

in a run-time error (checking for the number of arguments is done at compile
time).

e For convenience, we copy the first argumenttand the second te. 0xInt
accesses the integer in 8RVALUE. The first argument is the array 0£VALUES,
the second argument is the index in the array. This specifies the dimension of the
requested matrix.

e The return type is a matrix, and that matrix has to be allocated inthe/alue,
using the right dimensions. This is done with th&.ibValMatMalloc function.
Arun-time error is generated if there is not enough memory to allocate the matrix.

e Finally we have to set all elements of the matrix to the value=3iat accesses
the allocated matrix. The dimensions of that matrix are accessexkiwtc,
0xMatr, but here we already know the dimensions.

Note that the function arguments, as containeghinmay only be changed if they
are declared asonst. It is best to never change the arguments in the functon
cept from conversion from int to double and vice versa (automatic conversion using
0xLibCheckType is always safe). Another exception is when the argumentis a pointer
in which the caller expects a return value. An example will follow shortly.

Thethrees. c file should compile without problems into a DLL file. Makefiles for
the Microsoft and Watcom compilers have been provided; note the calling conventions

4 Appendix A1 Extending Ox

mentioned above, and the need to link in a library file or a definition file to resolve the
calls to the Ox DLL.

If you create the project afresh in Microsoft Visuatt€, you need to take the
following steps to compile successfully:

e create a Dynamic-link library project;

e add yourox\dev folder as an additional include directory (project settings;tC
preprocessor);

e addox\dev\oxwin.libas Object/link module (project settings, link);

e insertthrees.c andthrees.def into the list of project files. Thehrees.def
file defines the symbols to be export&dThrees).

If you use Borland @+, you can easily create an import library framwin.d11
using the IMPLIB.EXE utility supplied with the Borland compiler. More information
is in the Borland documentation.

The example for Watcom uses command line compilation:

e make.bat sets the paths, but is installation specific;

e makefile.bat adds the additional include search path;

e threes.def imports the required Ox functions and defines the symbols to be
exported.

The last item also illustrates the name decoration issu&in.d11 exports undec-
orated names, but Watcom assumes thattdcall functions are prefixed with an
underscore, and postfixed with the number of bytes required for the arguments. The
threes.def file renames to resolve this issue:

import ’_OxLibCheckType@16’ ’oxwin.d11’.0xLibCheckType
import ’_OxLibValMatMalloc@12’ ’oxwin.dl1’.0xLibValMatMalloc

After creating the DLL, the function can be used as follows:

.. ox/dev/windows/threes/threes.ox
#include <oxstd.h>

extern "msvc40/threes,FnThrees"
Threes(const r, const c);

main()

{
print (Threes(3,3));

The function is declared asctern, with the DLL file in msvc40/threes. The
name of the function inhrees.d11 is FnThrees, but in our Ox code we wish to call
it Threes. After this declaration, we can use the functibitrees as any other standard
library function.

If the program does not work, check the requirements to successfully link to the Ox
DLL under Windows on the Intel platform:

A1.3 Dynamic link libraries on Unix platforms 5

e standard call (stdcall) calling convention;

this pushes parameters from right to left, and lets the function clean the stack;
e structure packing at 8 byte boundaries,
o flat 32-bit memory model.

Make sure thaFnThrees is the exact name in the DLL file; some compilers will
change the name according to the calling convention (atd @inctions could be
subject to name mangling).

Al1.2.1 Dynamic link library and search paths

Note that the operating system has to be able to find the DLL file. In the example above
we gave the partial path, assuming the Ox file is run from its current location.

When making a package for distribution, the proper location is#f¥epackages
folder. By default, Ox will search relative tx/include and then twx. More form-
ally, if the specified DLL name in thextern statement contains a relative path, Ox
will search in

(1) in the folder of the source file;

(2) along thedX3PATH environment variable;

(3) along folders specified in thiemport statement;

(4) if the library name does not contain a path at all, say #lisb, then it will try
packages/x1ib/x1ib using the appropriate extension.

Alternatively you could add your own directory to tb&3PATH environment vari-
able, or use théimport statement.

A1.3 Dynamic link libraries on Unix platforms

Current versions of Ox for Linux (on Intel machines), SunOS and most other Unix
platforms support dynamic linking. Compiling and using the threes example works
very similarly on these platforms as under Windows. The Unix installation notes, are
also relevant when you produce your own DLLs.

For the Linux platform, for example, the threes code is compiled by executing the
command

make -f threes.mak
which creates threes.so. The headerditexport.h and dependencies must be in the
search patf.Then run
oxl threes

to see if it works. The dynamic linker must be able to find threes.so, as discussed in the
Unix installation notes.

10On some platforms there may be unresolved messages from the linker, which can be ignored.

6 Appendix A1 Extending Ox

Al.4 Adding C/C++ code: returning values in arguments

Returning a value in an argument only adds a minor complication. Remember that by
default all arguments in Ox and C are passed by value, and assignments to arguments
will be lost after the function returns. To return values in arguments, pass a pointer to a
variable, so that the called function may change what the variable points to.

To refresh our memory, here is some simple Ox code:

#include <oxstd.h>

funci(a)
{ a=1;
}
func2(const a)
{ af0o] = 1;
}
main()
{
decl b;
b =0; funcli(b); print(b);
b = 0; func2(&b); print(b);
}

This will print 01. In func1 we cannot use theonst qualifier because we are changing
the argument. Ifunc2 the argument is not changed, only what it points to.
The first serious example is thavert function from the standard library, which
also illustrates the use of a variable argument list.
static void OXCALL
fnInvert (0xVALUE #*rtn, OxVALUE *pv, int cArg)

{
int 1r, signdet = 0; double logdet = O;

0xZero(rtn, 0);

0xLibCheckSquareMatrix(pv, 0, 0);

if (cArg == 2) /* either 1 or 3 arguments */
OxRunError (ER_ARGS, "invert");

else if (cArg == 3)
0xLibCheckType (OX_ARRAY, pv, 1, 2);

r = 0xMatr(pv, 0);
OxLibValMatDup(rtn, OxMat(pv, 0), r, r);

if (IInvDet(OxMat(rtn, 0), r, &logdet, &signdet) !'= 0)

{
OxRunMessage ("invert(): inversion failed");
OxFreeByValue(rtn) ;
0xZero(rtn, 0);

}

if (cArg == 3)
{

Al.4 Adding C/G+ code: returning values in arguments 7

0xSetDbl(OxArray(pv,1), O, logdet);
0xSetInt(OxArray(pv,2), O, signdet);

e OxLibCheckSquareMatrix(pv, 0, 0) is the same as making a call to
0xLibCheckType (0XMATRIX, pv, O, 0) followed by a check if the matrix
is square.

e Usinginvert with two arguments is an error. When there are three arguments,
the code checks if the second and third are of GPARRAY.

e OxMatr gets the number of rows in the first argument (we already know that it is
a matrix, with the same number of rows as columns).

e Next, we duplicate (allocate a matrix and copy) the matrix in the first argument
to the return value. We shall overwrite this with the actual inverse.

o If the matrix inversion fails, the matrix intn is freed, and-tn is changed back
to an integer with value 0. It is important to free before setting the value to an
integer: otherwise a memory leak occurs.

e Otherwise, but only if the second and third argument were provided, do we putthe
log-determinantlogdet) and sign in those argumertzArray (pv, 1) accesses
the array at element 1 jpw. This is then used in the same waypaswas used to
access the first entry in that array (index 0).

A more complex example is that for the square root free Choleski decomposition
decldl, again from the standard library. The first argument is the symmetric matrix to
decompose, the next two are arrays in which we expect the function to return the lower
triangular matrix and vector with diagonal elements.

static void OXCALL
fnDecldl (0xVALUE *rtn, OxVALUE *pv, int cArg)
{

int i, j, r; MATRIX md, ml;

OxLibCheckSquareMatrix(pv, 0, 0);
0xLibCheckType (OX_ARRAY, pv, 1, 2);
OxLibCheckArrayMatrix(pv, 1, 2, OxMat(pv, 0));

r = OxMatr(pv, 0);

0xLibValMatDup(OxArray(pv, 1), OxMat(pv, 0), r, r);
OxLibValMatMalloc(OxArray(pv, 2), 1, r);

ml = 0xMat(OxArray(pv, 1), 0);

md = 0xMat(OxArray(pv, 2), 0);

if ('ml || 'md)
OxRunError (ER_OM, NULL);
if (ml == md)
0xRunError (ER_ARGSAME, NULL);

if ((0xInt(rtn, 0) = !'ILDLdec(ml, md[0], r)) == 0)
OxRunMessage("decld1l(): decomposition failed");

8 Appendix A1 Extending Ox

/* diagonal of ml is 1, upper is 0 */
for (i = 0; i < r; i++)
{ for (j =1+ 1; j<r; j++)
ml[i][j] = 0;
ml1[i][i] = 1;
}
}

The new functions here are:

e OxLibCheckArrayMatrixwhich checks that the arrays do not point to the mat-
rix to decompose, as idecldl (msym, &msym, &md).

e OxLibValMatMalloc allocates space for a matrix.

e OxRunError generates a run-time error message. The statefrfernl ==
md) checks if the arrays do not point to the same variable. If so, we have al-
located a matrix twice, but end up with the last matrix for both arguments. This
prevents code of the fordecldl (msym, &md, &md).

A1.5 Calling Ox-coded functions from C

This section deals with reverse communication: inside the C {ot)ode, we wish
to call an Ox function. The example is a numerical differentiation routine written in C,
used to differentiate a function defined in Ox code.

.................................... ox/dev/windows/callback/callback.c (part of)
#include "oxexport.h"

/* ... for FNumlDerivative() see callback.c ... */
static OxVALUE *s_pvOxFunc; /* 0x code function to call */

static int myFunc(int cP, VECTOR vP, double *pdFunc,
VECTOR vScore, MATRIX mHess)

{
0xVALUE rtn, arg, *prtn, *parg;
prtn = &rtn; parg = &arg;
OxSetMatPtr(parg, 0, &vP, 1, cP);
if (!FO0xCallBack(s_pvOxFunc, prtn, parg, 1))
return 1;
0xLibCheckType (0X_DOUBLE, prtn, 0, 0);
*pdFunc = 0xDbl(prtn, 0);
return O;
}

void OXCALL FnNumDer (OxVALUE #*rtn, OxVALUE *pv, int cArg)
{

int c;

Al1.5 Calling Ox-coded functions from C 9

0xLibCheckType (OX_FUNCTION, pv, 0, 0);
s_pvOxFunc = pv; /* function pointer */
0xLibCheckType (OX_MATRIX, pv, 1, 1);

c = OxMatc(pv, 1);
OxLibCheckMatrixSize(pv, 1, 1, 1, c);
0OxLibValMatMalloc(rtn, 1, c);

if (!FNumlDerivative(

myFunc, c, OxMat(pv, 1)[0], OxMat(rtn, 0)[0]))
{

OxFreeByValue(rtn) ;

0xZero(rtn, 0);

First we discus8nNumDer which performs the actual numerical differentiation by call-
ing FNumiDerivative:

e Argument O inpv must be a function, argument 1 a matrix, from which we only
use the first row (expected to hold the parameter values at which to differentiate).
The function argument is stored in the global variahlevOxFunc, so that it can
be used later.

e 0xLibCheckMatrixSize checks whether the matrix is< c (since thec value is
taken from that matrix, only the number of rows is checked).

e Finally, the C functionFNum1Derivative is called to compute the numerical
derivative ofuyFunc. When successful, it will leave the result in the first row of
the matrix inrtn (for which we have already allocated the space).

ThemyFunc function is a wrapper which calls the Ox function:

e Space for the arguments and the return value is required. There is always only
one return value: even multiple returns are returned as one array. Here we also
have just one argument for the Ox function, resulting in @R¥ALUE rtn and
arg. We mainly work with pointers t@xVALUES, stored here iprtn andparg
for convenience. The argument is set tb>acP matrix. A VECTOR is defined as
adouble * and aMATRIX as adouble **, so that the type ofvP is MATRIX,
which is always the type used for a matrix in theVALUE.

e F0xCallBack calls the Ox function in the first argument. The next three argu-
ments are the arguments to that Ox function: return type, function arguments,
and number of argument80xCallBack returnsTRUE when successfufALSE
otherwise.

o After checking the returned value for typ# DOUBLE, we can extract that double
and return it in whapdFunc points to.

The following Ox code uses the pre-programmed Ox function for the numerical
differentiation, and then the function just writtendallback.c. ThedRosenbrock
function is the Ox code which is called from C. The difference between the two here is
that the second expects and returns a row vector.

10 Appendix A1 Extending Ox

.. ox/dev/windows/callback/callback.ox

#include <oxstd.h>
#import <maximize>

extern "callback,FnNumDer" FnNumDer (const sFunc, vP);

fRosenbrock(const vP, const adFunc, const avScore,
const amHessian)

{
adFunc[0] = -100 * (vP[1] - vP[0] -~ 2) =~ 2
- (1 - vP[0]) "~ 2; // function value
return 1; // 1 indicates success
¥
dRosenbrock(const vP)
{
decl £ = -100 * (vP[1] - vP[0] =~ 2) ~ 2
- (1 - vP[0]) ~ 2;
return f; // return function value
}
main()
{
decl vp = zeros(2, 1), vscore;
//numerical differentiation using provided Ox function
NumiDerivative (fRosenbrock, vp, &vscore);
print(vscore);
// now using provided C function from DLL
vscore = FnNumDer (dRosenbrock, vp’);// expects row vec
print (vscore);
}

A mistake in the callback function is handled in the same way as other Ox errors.

For example, when changin@ [1] to vP[3] in dRosenbrock:

Runtime error: ’[3] in matrix[1][2]’ index out of range
Runtime error occurred in dRosenbrock(16), call trace:
C:\ox\dev\windows\callback\callback.ox (16): dRosenbrock
Runtime error: in callback function

Runtime error occurred in main(29), call trace:
C:\ox\dev\windows\callback\callback.ox (29): main

Al.6 Adding a user-friendly interface with Visual C++

Ox is limited in terms of user interaction, only providing console style input using the
scan function. It is possible, however, to use much more powerful external tools to
add dialogs and menus. In that way, a much better interface could be written than ever
possible directly in Ox. Indeed, there are no plans to make interface components an
intrinsic part of Ox: this would always lag behind the latest developments.

Al.6 Adding a user-friendly interface with Visual-& 11

Various approaches could be considered to add a user interface:

(1) Write a separate program which creates an input file.

(2) Write a separate program which generates an Ox source file.

(3) Write a DLL which exports dialogs to be used in Ox source code.
(4) Call Ox source code from an interactive program.

The first two approaches are the most simple, and can be used if the code is ‘uni-
directional’ (i.e. input is collected, then the program is run). Approach (2) is taken
by PcNaive: it collects user input on Monte Carlo design, generates an Ox program
from this, and call®xRun to run the generated code. It can also retrieve settings from
previously generated source code, to produce a sophisticated interactive package.

The remaining two approaches are more appropriate if the program must be truly
interactive, or when further interaction is based on the result of computations. Examples
in the next two sections use method (4). An application called RanApp is developed.
This offers a set of actions and a dialog to change settings. Each action results in an Ox
function being called. It is RanApp which is in control of the Ox run-time system; in
method (3) that would be the other way round.

The examples below use Visualt@ and Visual Basic§A1.7). Java could also be
considered. A key requirement is that the tool can make calls to C functions residing in
the Ox DLL.

The knowledge from the previous sections already suffices to write an interface us-
ing F0xCallBack. There is, however, a second form of simplified callbacks which calls
a function by its text name. This method does not allow for arguments, and bypasses
themain function. The RanApp example in this section uses the simplified method,
and adds additional functions to be called from Ox to get dialog driven input.

The full example is irbx/samples/ranapp. The code uses Microsoft Foundation
Class (MFC) and Microsoft Visual €+ (version 6), but similar code could be written
using other compilers and application frameworks. Here we shall only treat Ox specific
sections of the code.

The RanApp application requires a correctly installed cop$ieEWin 2 RanApp
reports all text and graphics output @iveWin achieved by adding just one function
call. (The GiveWin Developer’s Kit documents interfacing directly with GiveWin.)
Figure Al.1 shows RanApp on top of its graphical output, with the Dimensions dialog
active

..................................... ox/dev/windows/ranapp/RanApp.c (part of)

#include "stdafx.h"
#include "RanApp.h"
#include "RanAppDlg.h"
#include "RanDimDlg.h"

#include "oxexport.h"
#include "oxgivewin.h"

int g_iMainIP;

12 Appendix A1 Extending Ox
ﬂﬁl%anﬁpp _ (O] =
Correlogramn
——manl
I | | |
: | T T T : i T I I I
imensiuns
Dimension... Sample size, T [100 =i 0. |
'3_ Spectral demsity e Generate Dimenziar, 2 _| Cancel |
— mnl
Yariance ACF length, s |20 =

| /_/f Draw ’_/__/

Cloze

Frlelel

] A

//

Figure A1.1 RanApp screen capture.

... FnGetRanAppSettings listed below ...

// replaces standard Ox exit function

//

... part deleted ...

extern "C" void OXCALL OxRunOxExit(int i)

{

}

AfxMessageBox("Ox run-time error");
AfxThrowUserException() ;

static int iDoOxRun(LPCTSTR sExePath)

{

CString soxfile = "-r- ";
soxfile += sExePath;
soxfile.Replace(".exe", ".ox");

g_iMainIP = 0;

// Must startup GiveWin and install linking functions
if (!FOxGiveWinStart("RanApp", "RanApp", FALSE))
return O; // fail if cannot start GiveWin

Set0xExit (0xRunOxExit) ; // replace exit function
FOxLibAddFunction("ccc$GetRanAppSettings",
FnGetRanAppSettings, 0); // install new function

Al.6 Adding a user-friendly interface with Visual-& 13

g_iMainIP = O0xMainCmd(soxfile);//"-r- path\ranapp.ox"

if (g_iMainIP <= 1)
{

AfxMessageBox("Ox compilation error");

}

return g_iMainIP;

e iDoOxRun simulates a call to Ox with command line arguments comparable to
running Ox from the command line.

e FOxGiveWinStart startsGiveWinfor Ole automation communication. When
successful, Ox calls tprint and graphics functions will appear fBiveWin
FOxGiveWinStart resides irDxGiveWin2.d11.

o Next, we set up the command line. The first argument is always the name of the
program, so is not really important. The second argument, argument 1, is the
name of the Ox code to compile; that code isrbmapp . ox, and here the full
path name is obtained from th&xePath string. The third argument prevents
the Ox program from running, restricting to a compile and link only.

e SetOxExit replaces the default OxEXxit function with a new version.

e FOxLibAddFunction addsFnGetRanAppSettings as a function which can be
called from the Ox code aGetRanAppSettings. The ccc before the dollar
symbol defines it as having three constant arguments. The implementation is
listed below.

e 0OxMain compiles the code and returns a valud when successful. That value
is stored iniMainIP and used in subsequent calls to specific Ox functions.

e When RanApp is run, andanapp . ox compiled successfully, the Generate but-
ton lights up. Then, when Generate is pressedp#@enerate function from
ranapp . ox (given below) is called, and the Draw and Variance buttons become
active. These buttons also lead to a call to underlying Ox code. The €alls
are:

.................................. ox/dev/windows/ranapp/RanAppDlIg.c (part of)

static BOOL callOxFunction(char *sFunction)
{
BOOL ret_val = FALSE;
TRY
{
FOxRun(g_iMainIP, sFunction);
ret_val = TRUE;
}
CATCH_ALL(e)
{
}
END_CATCH_ALL

14 Appendix A1 Extending Ox

return ret_val;

ioid CRanAppDlg: :OnDimension()

{ callOxFunction("OnDimension");

ioid CRanAppDlg: : OnGenerate ()

¢ m_variance.EnableWindow();
m_draw.EnableWindow() ;
callOxFunction("OnGenerate");

ioid CRanAppDlg: : OnDraw ()

{ callOxFunction("OnDraw") ;

ioid CRanAppDlg: :OnVariance ()

¢ callOxFunction("OnVariance");

}

Below is a listing ofranapp . ox, the program behind this application. Itis a simple
Ox program which draws random number®iGenerate, prints their variance matrix
in OnVariance, and draws the correlogram and spectrurBribraw.
.. ax/dev/windows/ranapp/RanApp.ox

#include <oxstd.h>
#include <oxdraw.h>

GetRanAppSettings(const acT, const acN, const acAcf);
static decl s_mX;

static decl s_cT = 30;
static decl s_cN = 2;

static decl s_cAcf 4,
OnDimension()
{
if (GetRanAppSettings(&s_cT, &s_cN, &s_cAcf))
println("T = ", s_cT, " n =", s_cN,
" lag length = ", s_cAcf);
}
OnGenerate()
{
s_mX = rann(s_cT, s_cN);
}
OnVariance()
{
print(variance(s_mX));
}

OnDraw ()

Al.6 Adding a user-friendly interface with Visual-& 15

DrawCorrelogram(0, s_mX[]J[0]’, "ranl", s_cAcf);
DrawSpectrum(1l, s_mX[J[0]’, "rani", s_cAcf);
ShowDrawWindow() ;

e EventouglGetRanAppSettings () is defined, it still has to be declared.

e OnDimension() calls GetRanAppSettings() to get new values, printing the
new settings if successful. The arguments are passed as references so that they
may be changed. TheiC- code is:

extern "C" void OXCALL FnGetRanAppSettings(
OxVALUE *rtn, OxVALUE #*pv, int cArg)

{
CRanDimDlg dlg;
0xLibCheckType (OX_ARRAY, pv, 0, 2);
0xLibCheckType (OX_INT, OxArray(pv, 0), 0, 0);
0xLibCheckType (OX_INT, OxArray(pv, 1), 0, 0);
0xLibCheckType (OX_INT, OxArray(pv, 2), 0, 0);
// initialize dialog with current settings

dlg.m_cT = OxInt(OxArray(pv, 0), 0);
dlg.m_cDim = O0xInt(OxArray(pv, 1), 0);
dlg.m_cAcf = OxInt(OxArray(pv, 2), 0);
if (dlg.DoModal() == IDOK)
{

OxInt (OxArray(pv, 0), 0) = dlg.m_cT;

OxInt (OxArray(pv, 1), 0) = dlg.m_cDim;

OxInt (OxArray(pv, 2), 0) = dlg.m_cAcf;

OxInt(rtn, 0) = 1; // return 1 if successful
}
else

O0xInt(rtn, 0) = O;
}

e The three arguments are checked for type array, then the first in each array is
checked for type integer.

e OxArray(pv, 0) access the first elementin pv as an artfnt (., 0) the
integer in the first element of the array.

o If the user presseBK in the dialog, the new values are set in the arguments, and
the return value is changed to one.

16 Appendix A1 Extending Ox

Al.7 Adding a user-friendly interface with Visual Basic

A1.7.1 Calling the Ox DLL from Visual Basic

The first step is to establish the mechanisms for calling C-style functions residing in the
Ox DLL from Visual Basic. Once this works, all results from previous sections can be
used. We use Micosoft Visual Basic version 5 throughout. The syntax used for calling
the Ox DLL is similar to calling the Windows API from Visual Basic. Ox always uses
32 bitintegers, and the corresponding VB type is Long. In particular, for the types used
in the Ox code:

C/Oxtype allocation equivalent Function/Sub declaration

int Dim i As Long ByVal i As Long
bool Dim b As Long ByVal b As Long
double Dim d As Double ByVal d As Double
char * Dim s As String ByVal s As String
VECTOR Dim d() As Double d As Double
MATRIX Dim m As Long ByVal m As Long
OxVALUE * Dim pv As Long ByVal pv As Long

Theox\dev\oxwin.bas file declares all functions which are exported by Ox. The
MATRIX (§A1.11.1) and)xVALUE (§A1.10) types use pointers, which cannot be directly
manipulated in VB. However, passing such pointers back and forth in Ox function calls
is not a problem.

A simple examplepx\dev\windows\vb\oxtest.vbp, illustrates the issues. It
has four buttons which each implement a different type of function call. The code is:

.. ox/dev/windows/vb/OxTest.frm (part of)

Private Sub Commandil_Click()
Dim d1 As Double
Call RanSetRan("GM")

d1l = DRanU()
Textl.Text = di
End Sub

Private Sub Command2_Click()

Dim d1 As Double

Text2.Text = DLogGamma(Textl.Text)
End Sub
Private Sub Command3_Click()

Dim Mat(4) As Double

Dim pmat As Long

Dim Res As Long

Mat (0) = Text3.Text
Mat (1) = Text4.Text
Mat(2) = Text5.Text
Mat(3) = Text6.Text

pmat = MatAllocBlock(2, 2)

Al.7 Adding a user-friendly interface with Visual Basic 17

Call MatCopyVecr(pmat, Mat(0), 2, 2)
Res = IInvert(pmat, 2)
Call VecrCopyMat(Mat(0), pmat, 2, 2)
Call MatFreeBlock(pmat)

Text3.Text = Mat(0)

Text4.Text = Mat(1)

Text5.Text = Mat(2)

Text6.Text = Mat(3)
End Sub

Private Sub Command4_Click()
Dim Vec(6) As Double
Dim VecAcf(6) As Double
Dim Res As Long

Vec(0)
Vec (1)
Vec(2)
Vec(3)
Vec(4)
Vec(5)

> Pr O wWwN -

Res = FGetAcf(Vec(0), 6, 2, VecAcf(0))

Text7.Text = VecAcf(0)
Text8.Text = VecAcf (1)
End Sub

e The firstcommand changes the random number generator, which requires passing

a string, and gets a random number.
e The second passes the text of the first edit field (the random number) to

DLogGamma (the argument is automatically passed as a double here), and puts

the result in the second edit field.

e Button three is more complex. It creates a Basic array of doubles. Then allocates

an OxMATRIX of which the address is storedpmat. The Basic array is copied
to the2 x 2 Ox matrix by row. This is inverted using the Ox functibbnvert,

and the outcome put back into the Basic array. The Ox matrix is freed to prevent
a memory leak. In this way all Ox matrix functions can be used, but:

Care is required when using pointers. A mistake will not only crash
your program, but take VB down as well. So save your work before
testing your code.

e The last command shows that VB arrays of doubles are compatible with Ox
VECTORS. The array is passed by specifying the first elemert(0), which
actually will pass a pointer to the array.

18 Appendix A1 Extending Ox

A1.7.2 The RanApp example in Visual Basic

The structure of the VB program is very similar to that#ul .6:
....................................... ox/dev/windows/vb/RanApp.frm (part of)

Private Sub Form_Initialize()
Dim Res As Integer

Res = FOxGiveWinStart("RanApp", "RanApp", False)
Res = FOxLibAddFunction("ccc$GetRanAppSettings",
Address0f FnGetRanAppSettings, 0)

giMainIP = 0xMainCmd("-r- ranapp.ox")

Draw.Enabled = False

Variance.Enabled = False

If (Res = 0 Or giMainIP <= 0) Then
Generate.Enabled = False
Dimension.Enabled = False

End If

End Sub
Private Sub Form_Terminate()
Call 0xGiveWinFinish(True)
End Sub
Private Sub Draw_Click()
Dim Res As Integer
Res = FOxRun(giMainIP, "OnDraw")
End Sub
Private Sub Generate_Click()
Dim Res As Integer
Res = FOxRun(giMainIP, "OnGenerate")
If (Res > 0) Then
Draw.Enabled = True
Variance.Enabled = True
End If
End Sub
Private Sub Variance_Click()
Dim Res As Integer
Res = FOxRun(giMainIP, "OnVariance")
End Sub

e FOxGiveWinStart is again required to sta@iveWinand establish the automa-
tion link.

e TheGetRanAppSettingsisadded to Ox. Thistime itis a function which resides
in the Basic code. Th&ddress0f operator returns the function address.

e 0xMainCmd is used to call Ox with the whole command line in a string. We
assume thatanApp. ox is in the current directory.

e Pressing a button calls the corresponding Ox function.

Al.7 Adding a user-friendly interface with Visual Basic 19

The Basic functionFnGetRanAppSettings is called asGetRanAppSettings
from Ox:
.. ox/dev/windows/vb/RanAppFn.bas

Attribute VB_Name = "RanAppFn"
Public Sub FnGetRanAppSettings(ByVal rtn As Long, _
ByVal pv As Long, ByVal cArg As Integer)

Call OxLibCheckType(0OX_ARRAY, pv, 0, 2)

Dim cT As Long

Dim cN As Long

Dim cLag As Long

Dim Res As Integer

Dim dlg As New RanDimDlg

Res = 0xValGetInt(0xValGetArrayVal(_
0xValGetVal(pv, 0), 0), cT)

Res = 0xValGetInt(0xValGetArrayVal(_
0xValGetVal(pv, 1), 0), cN)

Res = 0xValGetInt(0xValGetArrayVal(_
O0xValGetVal(pv, 2), 0), cLag)

dlg.mcT = cT
dlg.mcN = cN
dlg.mcLag = clag

dlg.Show vbModal

If (dlg.mIsOK) Then
cT = dlg.mcT
cN = dlg.mcN
clLag = dlg.mcLag
Call OxValSetInt(0xValGetArrayVal(_
OxValGetVal(pv, 0), 0), cT)
Call 0OxValSetInt(0xValGetArrayVal(_
OxValGetVal(pv, 1), 0), cN)
Call OxValSetInt(OxValGetArrayVal(_
OxValGetVal(pv, 2), 0), clLag)
Call OxValSetInt(rtn, 1)
End If

End Sub

This time we cannot use macros to access the contents of the arguments. We
know thatpv will consist of threeDxVALUES. 0xValGetVal (pv, 0) accesses the first,
0xValGetVal(pv, 1) the second, etc. We also know that each of these is a refer-
ence, which is passed as an ar@walGetArrayVal accesses the reference. Finally,
0xValGetInt is used to get the value as an integer, 8rlalSetInt to Set it to an
integer.

20 Appendix A1 Extending Ox

A1.8 Linking Fortran code

Linking Fortran code to Ox does not pose any new problems, apart from needing to
know how function calls work in Fortran. The simplest solution is to write C wrappers
around the Fortran code, and use a Fortran and C compiler from the same vendor.
Arguments in Fortran functions are always by reference: change an argument in
a function, and it will be changed outside the function. For this reason, well-written
Fortran code copies arguments to local variables when the change need not be global.
Two examples are provided. The directosy/samples/fortran contains a
simple test function in Fortran, and a C wrapper which also provides a function which
is called from Fortran. The second example isirpackages/quadpkd. There, we
provide wrappers for five QuadPack functions, thus adding univariate numerical integ-
ration routines to Ox. These examples use Watcom Fortran, but other compilers will
also be feasible (the GiveWin Developer’s Kit has some examples with Lahey Fortran).

A1.9 Ox function summary 21

A1.9 Ox function summary

This section documents tli@x related functions which are exported from the Ox DLL.
The low level mathematical and statistical functions are listéghih.11. All functions

in this section requirexexport .h, except for a few which neegkgivewin.h, which
will be explicitly noted.

Functions which interface with Ox use tB&CALL specifier. This, in turn, is just
a relabelling of_IDCALL, defined inox/dev/jdsystem.h. Currently, this declares the
calling convention for the Microsoft, Borland and Watcom compilers on the Intel plat-
form. For other compilers on this platform, and on other platforms, it defaults to noth-
ing. So, to add support for a new compiler, you could:

(1) leavejdsystem.hunchanged, and set the right compiler options when compiling
(this is the preferred approach);
(2) add support for the new compiler jdsystem.h.

Ox extension function syntax
void OXCALL FnFunction(OxVALUE *rtn, OxVALUE #*pv, int cArg);

rtn in: pointer to arDxVALUE of type 0X_INT and value O
out: receives the return value of pvFunc
pv in: the arguments of the function cathey must be checked for

type before being accessed
out: unchanged, apart from possible conversion fEXTINT to
0X_DOUBLE or vice versa
cArg in: number of elements ipv; unless the function has a variable
number of arguments, there is no need to reference this value.

No return value.

Description
This is the syntax required to make a function callable from ExFunction
should be replaced by an appropriate name, but is not the name under which the
function is known inside an Ox program.

FOxCallBack, FOxCallBackMember

bool FOxCallBack(OxVALUE *pvFunc, OxVALUE *rtn, OxVALUE *pv,
int cArg);

bool FOxCallBackMember (0xVALUE *pvClass, const char *sMember,
OxVALUE *rtn, OxVALUE *pv, int cArg);

22 Appendix A1 Extending Ox

pvFunc in: the function to call, must be of typ@X_FUNCTION or
OX_INTFUNC

pvClass in: the object from which to call a member, must be of type
0X_CLASS

sMember in: name of the member function

rtn out: receives the return value of the function call

pv in: the arguments of pvFunc

cArg in: number of elements ipv

Return value
TRUE if the function is called successfullyALSE otherwise.

Description
Calls an Ox function from C.
If the returned value-tn is not passed back to Ox, c@lkFreeByValue (rtn)
to free it.

FOxCreateObject,0OxDeleteObject

bool FOxCreateObject(const char *sClass, OxVALUE *rtn,
OxVALUE *pv, int cArg);

void OxDeleteObject (0xVALUE *pvClass);

sClass in: name of class
rtn in: pointer to0x_VALUE
out: receives the created object
pv in: the arguments for the constructor
cArg in: number of elements ipv
pvClass in: the object from which to delete, previously created with
FOxCreateObject

Return value
FOxCreateObject returnsTRUE if the function is called successfullFALSE
otherwise.

Description
FOxCreateObject creates an object of the named class which can be used from
C; the constructor will be called by this function. UkeDeleteObject to delete
the object; this calls the detructor, and deallocates all memory owned by the
object.

FOxGetDataMember
bool FOxGetDataMember (0xVALUE *pvClass, const char *sMember,
0xVALUE *rtn) ;
pvClass in: the object from which to get a data member, must be of type
0X_CLASS
sMember in: name of the data member
rtn out: receives the return value of the function call

A1.9 Ox function summary 23

Return value
TRUE if the function is called successfullyALSE otherwise.

Description
Gets a data member from an object. The returned value is for reference only, and
should not be changed, and should only be used for temporary reference.

FOxGiveWinStart,FOxGiveWinStartBatch
bool FOxGiveWinStart (LPCTSTR OxModuleName,
LPCTSTR OxWindowName, bool bUseStdHandles);
bool FOxGiveWinStartBatch(LPCTSTR OxModuleName,
LPCTSTR OxWindowName, bool bUseStdHandles, int iBatch);

0xModuleName in: name to be used for module

OxWindowName out: name of output window in GiveWin

bUseStdHandles in: TRUE: use standard input/output, else use
GiveWin pipe

iBatch in: index of batch automation function, usd if no
batch

Return value
TRUE if successful.

Description
These functions establish a link to GiveWin, and can only be used with GiveWin
under Windows. The required header fil@igGiveWin. h.
The DLL which is linked to i9xGiveWin2.d11. It exports the same functional-
ity as GiveWin, see the GiveWin Developer’s Kit.

FOxLibAddFunction

bool FOxLibAddFunction(char *sFunc, 0xFUNCP pFunc, bool fVarArg);
sFunc in: string describing function
pFunc in: pointer to C function to install
fVarArg in: TRUE: has variable argument list

Return value
TRUE if function installed successfullfFALSE otherwise.

Description
0xFUNCP is a pointer to a function declared as:

void OXCALL Func(0xVALUE #*rtn, OxVALUE *pv, int cArg);

The syntax okFunc is:

arg-typesfunctionname\o

arg-typess ac (indicating aconst argument) or a space, with one entry for each
declared argument.

This function links in C library functions statically, e.g. for part of the drawing
library:

24 Appendix A1 Extending Ox

FOxLibAddFunction("cccc$Draw", fnDraw, 0);
FOxLibAddFunction("ccccc$DrawT", fnDrawT, 0);
FOxLibAddFunction("ccc$DrawX", fnDrawX, 0);
FOxLibAddFunction("ccccc$DrawMatrix", fnDrawMatrix, 1);

FOxLibAddFunction("cccccc$DrawTMatrix", fnDrawTMatrix, 1);
FOxLibAddFunction("ccccc$DrawXMatrix", fnDrawXMatrix, 1);

This function is not required when using thetern specifier for external link-
ing, as used in most examples in this chapter.

FOxRun

bool FOxRun(int iMainIP, char *sFunc);
iMainIP in: return value fronDxMain
sFunc in: name in Ox code of function to call

Return value
TRUE if the function is run successfullyALSE otherwise.

Description
Calls a function by name, bypassingin ().

IOXRunlnit
int IO0xRunInit(void);

Return value
Zero for success, or the number of link errors.

Description
Links the compiled code and initializes to prepare for running the code.

FOxSetDataMember
bool FOxSetDataMember (0xVALUE *pvClass, const char *sMember,
O0xVALUE *pv) ;
pvClass in: the object in which to set a data member, must be of type

0X_CLASS
sMember in: name of the data member
pv in: new value of the data member

Return value
TRUE if the function is called successfullyALSE otherwise.

Description
Sets a data member from an object. The assigned value is taken over (if it is by
value, it is transferred, angl: will have lost its by value property0{_VALUE).

|OxVersion
int I0xVersion(void);

A1.9 Ox function summary 25

Return value
Returns 100 times the version number190 for version 1.00.

OxFnDouble,OxFnDouble2,0xFnDouble3,0xFnDoublelnt
void OxFnDouble(OxVALUE *rtn, OxVALUE *pv,
double (OXCALL * fni1) (double));
void OxFnDouble2(OxVALUE *rtn, O0xVALUE *pv,
double (OXCALL * fn2) (double,double));
void OxFnDouble3(0OxVALUE *rtn, O0xVALUE *pv,
double (0OXCALL * fn3) (double,double,double));
void OXCALL OxFnDoubleInt(OxVALUE *rtn, OxVALUE *pv,
double (OXCALL * fndi) (double,int))

rtn out: return value of function

pv in: arguments for functiotin

fni in: function of one double, returning a double

fn2 in: function of two doubles, returning a double

fn3 in: function of three doubles, returning a double
fndi in: function of a double and an int, returning a double

No return value.

Description
These functions are to simplify calling C functions, as for example in:

static void OXCALL
fnProbgamma (0xVALUE *rtn, OxVALUE *pv, int cArg)
{ OxFnDouble3(rtn, pv, DProbGamma) ;
}
static void OXCALL
fnProbchi (OxVALUE #*rtn, OxVALUE *pv, int cArg)
{ OxFnDouble2(rtn, pv, DProbChi);
}
static void OXCALL
fnProbnormal (OxVALUE *rtn, OxVALUE *pv, int cArg)
{ OxFnDouble(rtn, pv, DProbNormal) ;

}
OxFreeByValue
void OxFreeByValue (0xVALUE *pv) ;
pv in: pointer to value to free

out: freed value
No return value.

Description
Frees the matrix/string/array (i.pv is 0X_MATRIX, OX_ARRAY, or 0OX_STRING) if
it has propertypX _VALUE.

26 Appendix A1 Extending Ox

OxGiveWinFinish

void 0xGiveWinFinish(bool bFocusText) ;
bFocusText in: TRUE: switch to GiveWin and set focus to the
output window
No return value.

Description
Closes the link to GiveWin, and can only be used with GiveWin under Win-
dows. The required header file ixGiveWin.h. 0xGiveWinFinish matches
FOxGiveWinStart.

OxLibArgError

void OxLibArgError(int iArg);
iArg in: argumentindex

No return value.

Description
Reports an error in argumenirg, and generates a run-time error.

OxLibArgTypeError

void OxLibArgTypeError(int iArg, int iExpect, int iFound);
iArg in: argumentindex
iExpect in: expected type, one @X_INT, 0X_DOUBLE, OX_MATRIX, etc.
iFound in: found type

No return value.

Description
Reports a type error in argumeiiirg, and generates a run-time error.

OxLibCheckArrayMatrix
void OxLibCheckArrayMatrix (OxVALUE *pv, int iFirst, int ilast,
MATRIX m);
pv in: array of values of typ@X_ARRAY
iFirst in: firstin array to check
ilLast in: lastin array to check
m in: matrix

No return value.

Description
Checksif any of the values v [iFirst] . . .pv[iLast] (these must be of type
0X_ARRAY) coincide with the matrix m.

A1.9 Ox function summary 27

OxLibCheckMatrixSize
void OxLibCheckMatrixSize (OxVALUE *pv, int iFirst, int ilast,
int r, int c);

pv in: array of values of any type
iFirst in: firstin array to check
ilast in: lastin array to check

T in: required row dimension

c in: required column dimension

No return value.

Description
Checks whether all the values ipv[iFirst]...pv[iLast] are of type
0X_MATRIX, and whether they have the required dimension and are non-empty.

OxLibCheckSquareMatrix

void OxLibCheckSquareMatrix (0xVALUE *pv, int iFirst, int ilast);
pv in: array of values of any type
iFirst in: firstin array to check
ilast in: lastin array to check

No return value.

Description
Checks whether all the values ipv[iFirst]...pv[ilLast] are of type
0X_MATRIX, and whether the matrices are square and non-empty.

OxLibCheckType
void OxLibCheckType(int iType, OxVALUE #*pv, int iFirst,int ilast);
iType in: required type, one diX_INT, 0X_DOUBLE, 0X_MATRIX, etc.
pv in: array of values of any type
out: 0X_INT changed t@X_DOUBLE or vice versa
iFirst in: firstin array to check
ilast in: lastin array to check

No return value.
Description
Checks whether all the valuespr [iFirst] .. .pv[iLast] are of typeiType.

OxLibValArrayCalloc
void OxLibValArrayCalloc(0xVALUE *pv, int c);

pv in: value
out: allocated to type array
c in: number of elements

No return value.

28 Appendix A1 Extending Ox

Description
Makes pv of type 0X_ARRAY and allocates an array aof 0xVALUES in that
OX_ARRAY.
If pv is not received from Ox, you should set it to an integer before calling this
function, also seéxLibValMatMalloc

OxLibValMatDup
void OxLibValMatDup(OxVALUE *pv, MATRIX mSrc, int r, int c);
pv in: value
out: allocated to type matrix
mSrc in: source matrix
r,c in: number of rows, columns of source matrix

No return value.

Description
Makespv of type 0X_MATRIX, allocates arr x ¢ matrix for it, and duplicates
mSrc in that matrix. You could us8xFreeByValue to free the matrix, but nor-
mally that would be left to the Ox run-time system.
If pv is not received from Ox, you should set it to an integer before calling this
function, also se@xLibValMatMalloc

OxLibValMatMalloc
void OxLibValMatMalloc(OxVALUE *pv, int r, int c);

pv in: value
out: allocated to type matrix
r,c in: number of rows, columns of source matrix

No return value.

Description
Makespv of type 0X_MATRIX and allocates am x c matrix for it. You could
useOxFreeByValue to free the matrix, but normally that would be left to the Ox
run-time system.

If pv is not received from Ox, you should set it to an integer before calling this
function, for example:

0xVALUE tmp;
0xSetInt (&tmp, 0, 0);
OxLibValMatMalloc (&tmp, 2, 2);

Failure to do so could bring down the Ox system.

OxMain,OxMainCmd
int O0xMain(int argc, char *argv([]);
int O0xMainCmd(char *sCommand) ;

A1.9 Ox function summary 29

argc in: number of command line arguments

argv in: command line argument list (first is program
name)

sCommand in: command line as one string

Return value
The entry pointfomain () if successful, oravalug 1 if there was a compilation
or link error.

Description
Processes the Ox command line, including compilation, linking and running. The
arguments t@xMain are provided as an array of pointers to strings, with the first
entry being ignored.
The arguments t@xMainCmd are provided as one command line string, with
arguments separated by a space. A part in double quotes is considered one argu-
ment, SO"-r- ranapp.ox" and"-r- "ranapp.ox"" are the same.

OxMainExit

void OxMainExit(void);
No return value.

Description
Deallocates run-time buffers.

OxMainlnit

void 0OxMainInit(void);
No return value.

Description
Sets output destination &tdout, and links the standard run-time and drawing
library.

OxMakeByValue

void OxMakeByValue (0xVALUE *pv) ;
pv in: pointer to value to make by value

out: copied value (if not already by value)
No return value.

Description
Makes the matrix/string/array (i.ev is 0X_MATRIX, OX_ARRAY, or 0X_STRING)
by value. That is, if it doesn’t already have the VALUE property, the contents
are copied, and th@X_VALUE flag is set. Note that a newly allocated value auto-
matically has th@X_VALUE flag.

30 Appendix A1 Extending Ox

OxMessage
void OxMessage(char *s);
S in: textto print

No return value.

Description
Prints a message.

OxRunAbort
void O0xRunAbort(int i);
i in: currently not used

No return value.

Description
Exits the run-time interpreter at the next end-of-line. The code should have end-
of-line coding on (so not usingon), and end-of-line interpretation on (either
using-rn or debugging). This exits cleanly, so that, when an external program is
running Ox functions (e.g. usirigPxRun), the next call will work as expected.

OxRunError
void OxRunError(int iErno, char #*sToken);
iErno in: error number as defined txexport.h, or:
—1: skips text of error message
sToken in: NULL or offending token

No return value.

Description
Reports a run-time error message udiggunErrorMessage.

OxRunErrorMessage

void OxRunErrorMessage(char *s);
S in: message text

No return value.

Description
Reports a run-time error message, the call trace, and exits the program.

OxRunExit

void OxRunExit(void);

No return value.

Description
Cleans up after running a program.

A1.9 Ox function summary

31

OxRunMessage
void OxRunMessage(char *s);

s in:

No return value.

Description
Reports a run-time message.

OxValGet. ..
O0xVALUE *0xValGetArray (OxVALUE *pv);
OxValGetArrayLen (0xVALUE *pv) ;

OxVALUE *0xValGetArrayVal (OxVALUE *pv, int i);
OxValGetDouble (0xVALUE *pv, double *pdVal);

int

message text

bool

bool 0xValGetInt (0xVALUE *pv, int *piVal);
MATRIX OxValGetMat (OxVALUE *pv) ;

int OxValGetMatc (OxVALUE *pv);

int OxValGetMatr (OxVALUE *pv) ;

int OxValGetMatrc (0xVALUE *pv) ;

char *x0xValGetString (OxVALUE *pv) ;

bool

int

0xValGetStringCopy (OxVALUE *pv, char *s,

int mxLen);

O0xValGetStringLen(0xVALUE *pv) ;
OxVALUE *0xValGetVal(OxVALUE *pv, int i);

pv in:

0xVALUE to get information from

out: could have changed to reflect requested type

i in:
pdval

Return value

OxValGetArray
OxValGetArrayLen
OxValGetArrayVal

0xValGetDouble
0xValGetInt
OxValGetMat

OxValGetMatc
OxValGetMatr
OxValGetMatrc
OxValGetString
0xValGetStringlLen
OxValGetVal

index in array
out: double value (if successful)

array of0xVALUES orNULL if not 0OX_ARRAY

array length oo if not 0X_ARRAY

ith OxVALUE or NULL if not OX_ARRAY or index is
beyond array bounds

TRUE if value inpv can be interpreted as a double
TRUE if value inpv can be interpreted as an integer
MATRIX if value in pv can be interpreted as a matrix
or NULL if failed

number of columns if successful oiif failed

number of rows if successful orif failed

number of elements if successful ®if failed

pointer to string oNULL if not 0X_STRING

string length o0 if not 0X_STRING

returns theith 0xVALUE in pv (without checking the
pv array bounds)

32 Appendix A1 Extending Ox

Description
Gets information from amxVALUE. A type conversion is applied tpv if the
0xVALUE is not of the requested type (which is unlike the macro versions of
§A1.10). The conversion is similar to making a calldgLibCheckType first,
and then using the macro version. If conversion to the requested type cannot be
made, this is reflected in the return value.

OxValHasType, OxValHasFlag
bool OxValHasType (0OxVALUE #pv, int iType);
bool OxValHasFlag(OxVALUE #pv, int iFlag);

pv in: 0xVALUE to get information from
iType in: type to test for
iFlag in: flag (property) to test for

Return value
TRUE if pv has the specified type/property.

OxValSet. ..

void OxValSetDouble(OxVALUE *pv, int dVal);

void OxValSetInt (OxVALUE *pv, int iVal);

void 0xValSetNull (0xVALUE *pv);

void OxValSetString(OxVALUE *pv, const char *sVal);
void OxValSetZero (0xVALUE *pv);

pv in: 0xVALUE to set
out: changed value
dval in: double value
ival in: integer value
SVal in: string value

No return value.

Description
OxValSetDouble setspv to a double
0xValSetInt setspv to an integer
OxValSetString sSetspv to a string (the string is duplicated)
OxValSetZero setspv to an integer with value zero
0xValSetNull setspv to an integer with value zero and property

0X_NULL
O0xValSetDouble, 0xValSetInt and0xValSetString call 0xFreeByValue
before changing the value (unlike the macro versions); so, if the argument is not
received from Ox, you should first set it to an integer to avoid a spurious call to
free memory0xValSetZero and0xValSetNull donot call 0xFreeByValue.
0xValSetNull setspv to an integer of value zero with propey NULL. Using
such a value in an expression in Ox leads to a run-time error (variable has no
value).

A1.9 Ox function summary 33

OxValType
int 0xValType (OxVALUE *pv) ;
pv in: 0xVALUE to get information from

Return value
returns the type ofv.

SetOxExit
void SetOxExit(void (OXCALL * pfnNewOxExit) (int));
pfnNewOxExit in: new exit handler function

No return value.

Description
Installs a exit handler function f@xExit which is called when a run-time error
or a fatal error occurs. The defaOltExit function does nothing.
A run-time error is handled byxRunErrorMessage as follows:

(1) Report the text of the error message.

(2) If OxRunError is called withiErno > 1, then call0xExit (iErno).

(3) If control is passed on, callkkExit (0).

(4) If control is passed on, and Ox is in run-time mode: the run-time engine
unwinds and exits after cleaning up (or when interpreting: is ready to accept
the next command). If Ox is not in run-time mode: treat as fatal error.

A fatal error is handled as follows:

(1) CalloxExit(1).
(2) If control is passed on, cadkit (1).

Fatal errors can occur during compilation when Ox runs out of memory, or any
of the symbol/literal/code tables are full.

SetOxGets
void Set0xGets(
char * (0XCALL * pfnNewOxGets) (char *s, int n));

pfnNewOxGets in: newOxGets function
s out: read input
n in: allocated size of s

No return value.

Description
Replaces theDxGets function by pfnNewOxGets. Is used together with
Set0xPipe to redirect the output froracan.
pfnNewOxGets should return te if successful, andfULL if it failed.

34 Appendix A1 Extending Ox

SetOxMessage
void SetOxMessage(
void (OXCALL * pfnNewOxMessage) (char *));
pfnNewOxMessage in: new message handler function
No return value.

Description
Installs a message handler function which is used4¥essage.

SetOxPipe
void SetOxPipe(int cPipe);
cPipe in: > 0: sets pipe buffer sizd) uses default buffer sizes 0

frees pipe
No return value.

Description
Activates piping of output to another destination thamlout. The output from
the print function will from now on be handled by thexPuts function, and
input by 0xGets. A subsequent attempt for output or input will fail if no new
handler for0xPuts or 0xGets has been installed.

SetOxPuts

void SetOxPuts(void (OXCALL * pfnNewOxPuts) (char *s));
pfnNewOxPuts in: newO0xPuts function
S in: null-terminated string to output

No return value.

Description
Replaces thedxPuts function by pfnNewOxPuts. IS used together with
Set0xPipe to redirect the output frorprint.

SetOxRunMessage

void SetOxRunMessage(void (OXCALL * pfnNewOxRunMessage) (char *));
pfnNewOxRunMessage in: new message handler function

No return value.

Description
Installs a message handler function which is usedOkRunMessage and
OxRunErrorMessage

SOxGetTypeName
char * S0xGetTypeName (int iType);
iType in: type, one o0X_INT, 0X_DOUBLE, 0X_MATRIX, etc.

A1.9 Ox function summary

35

Return value
A pointer to the text of the type name.

SOxIntFunc

char * SO0xIntFunc(void);

Return value
A pointer to the name of the currently active internal function.

36 Appendix A1 Extending Ox

A1.10 Macros to acces8xVALUES

The 0xVALUE is the container for all Ox types. It contains the type identifier, a range

of property flags, and the actual data. The type, flags and data can be accessed through
functions listed above, or through macros when using C-bt-CAll constants, types

and macros are defined éxtypes.h. The Visual Basic filooxwin.bas defines the
constants and flags for use in Basic programs. For example, macros are defined to
access the type of @lxVALUE:

ISINT(pv) TRUE if integer type

ISDOUBLE((pv) TRUE if double type

ISMATRIX(pv) TRUE if MATRIX type

ISSTRING(pv) TRUE if string type (array of characters)

ISARRAY (pv) TRUE if array of 0OxVALUES
ISFUNCTION(pv) TRUE if function type (written in Ox code)
ISCLASS(pv) TRUE if class object type
ISINTFUNC(pv) TRUE if internal (library) function
ISFILE(pv) TRUE if file type

GETPVTYPE(pv) gets the type of the argument

ISNULL (pv) TRUE if hasOX_NULL property

ISADDRESS(pv) TRUE if hasOX_ADDRESS property

An 0xVALUE is a structure which contains a union of other structures. For example
when usingxVALUE *pv:

GETPVTYPE(pv) content description

OX_INT pv->type type and property flags
pv->t.ival integer value

0X_DOUBLE pv->type type and property flags
pv->t.dval double value

O0X_MATRIX pv->type type and property flags
pv->t.mval.data MATRIX value
pv->t.mval.c number of columns
pv->t.mval.r number of rows

O0X_STRING pv->type type and property flags

pv->t.sval.size string length
pv->t.sval.data actual string (null terminated)
OX_ARRAY pv->type type and property flags
pv->t.aval.size array length
pv->t.aval.data pointerto array oOxVALUES

Al1.10 Macros to accesxVALUES 37

The macros below provide easy access to these values. They all access an element in
an array ofoxVALUES. None of these check the input type, and it is assumed that the
correct type is already known.

macro purpose input type
OxArray(pv, i) accesses the array valuepn[i] O0X_ARRAY
OxArrayLen(pv,i) accesses the array lengthpini[i] OX_ARRAY
0xDbl(pv, i) accesses the double valuepin[i] 0X_DOUBLE
0xInt(pv, i) accesses the integer valuepin[i] OX_INT
0xMat(pv, i) accesses theATRIX value inpv[i] O0X_MATRIX
0xMatc(pv, i) accesses the no of columnspin[i] 0X_MATRIX
O0xMatr(pV, i) accesses the no of rowspr [i] 0X_MATRIX
O0xMatrc(pV, i) gets the no of elements v [i] 0X_MATRIX

0xSetDbl(pv,i,d) setspv[i] to X DOUBLE of valued —
0xSetInt(pv,i, j) setspv[i] to OX_INT of value j —
OxSetMatPtr(pv,i, setspv[i] to 0X_-MATRIX pointing

m, cr, cC) to thecr x cc matrixm —
0xStr(pv, i) accesses the string valuepn[i] 0X_STRING
0xStrLen(pv, i) accesses the string lengthgn[i] 0X_STRING

0xZero(pV, i) setspv[i] to OX_INT of value O —

38 Appendix A1 Extending Ox

Al.11 Ox exported mathematics functions

A1.11.1MATRIX and VECTOR types

This section documents the C functions exported from the OxWin DLL to perform
mathematical tasks. With the DLL installed, any C or-€ function could call these
functions to perform a mathematical task. The primary purpose is, if you, for example,
wish to use some random numbers in your C extension to Ox. Itis also possible to just
use these functions without using Ox at all.

To use any of the functions in this section, you need to include pdthpes . h and
jdmath.h (in this order), e.g.

#include "/ox/dev/jdtypes.h"

#include "/ox/dev/jdmath.h"
Or, if you have set up the information for your compiler such that/dev is in the
include search path:

#include "jdtypes.h"

#include "jdmath.h"

Several types are definedd/dev/jdtypes.h, of which the most important are
MATRIX, VECTOR andbool.

TheMATRIX type used in this library is a pointer to a column of pointers, each point-
ing to a row of doubles. AECTOR is just a pointer to an array of doubles. IMATRIX,
consecutive rows (th€ECTORS) do occupy contiguous memory space (although that
would not be strictly necessary in this pointer to array of pointers model). Suppsse
a 3 by 3 matrix, then the memory layout can be visualized as:

m —m[0]
m[0] — m([0][0],m[0][1],m[0][2] firstrow
m[1] — m[11[0],m[11[1]1,m[1]1[2] second row
m[2] — m[2]1[0],m[2] [1]1,m[2][2] third row

Matrices can be manipulated as follows, using3he 3 matrixm:

m[0] is aVECTOR, the first row ofm;

&m[1] is aMATRIX, the last two rows of;

&m[1] [1] is aVECTOR, the last two elements of the second row.

&(&m[1]1) [1] is aMATRIX, the last two elements of the second row (this is only
a 1 row matrix, since there is no pointer to the third row).

A MATRIX is allocated by a call tdatAlloc and deallocated witMatFree. For a
VECTOR the functions ar&ecAlloc andfree, €.9.:

MATRIX m; VECTOR v; int i, j;

MatAlloc(3, 3);
VecAlloc(3);

m
v

if ('m || ') /* yes: error exit */

Al1.11 Ox exported mathematics functions 39

printf("error: allocation failed!");

MatZero(m, 3, 3); /* set m to 0 */
MatZero(&v, 1, 3); /* set v to 0 */

for (i = 0; 1 < 3; ++1i) /* set both to 1 */
]

{ for (j = 0; < 3; ++j)
m[i] [j] 1;
v[i] = 1;
}
/* ... do more work */
MatFree(m2, 3, 3); /* done: free memory */
free(v);

Note that the memory of a matrix is owned by the original matrix. NGT safe to
exchange rows by swapping pointers. Rows also cannot be exchanged between different
matrices; instead the elements must be copied from one row to the other. Columns have
to be done element by element as well.

As a final example, we show how to define a matrix which points to part of another
matrix. For example, to set up a matrix which points to the 2 by 2 lower right block in
m, allocate the pointers to rows:

MATRIX m2 = MatAlloc(2, 0);

m2[0] = &m[1][1];

m2[1] = &m[2][1];

// do work with m and m2, then free m2:

MatFree(m2, 2, 0);

Again note that the memory of the elements is still ownednbyleallocatingm
deletes what m2 tries to point to.

When a language supports C-style DLLs, but not the pointer-to-pointer model used
in theMATRIX type, the following functions may be used to provide the necessary map-
ping:

MatAllocBlock function version oMatAlloc
MatCopyVecc store column-vectorized matrix iNRATRIX
MatCopyVecr store row-vectorized matrix inMATRIX
MatFreeBlock function version oMatFree

MatGetAt get an element in KATRIX

MatSetAt set an element in MATRIX

VeccCopyMat store aMATRIX as a column vector
VecrCopyMat store aMATRIX as a row vector

40

Appendix A1 Extending Ox

A1.11.2 Exported matrix functions

The following list gives the exported C functions, with their Ox equivalent.

c_abs

cdiv

c_exp

c_log

cmul
c_sqrt
DBesselO1
DBetaFunc
DDensBeta
DDensChi
DDensF
DDensGamma
DDensMises
DDensNormal
DDensPoisson
DDensT
DGammaFunc
DGamma

DGetInvertEps

DLogGamma
DPolyGamma
DProbBeta
DProbBVN
DProbChi
DProbChiNc
DProbF
DProbFNc
DProbGamma
DProbMises
DProbMVN
DProbNormal
DProbPoisson
DProbT
DProbTNc
DQuanBeta
DQuanChi
DQuanF
DQuanGamma
DQuanMises
DQuanNormal

cabs

cdiv

cexp

clog

cmul
csqrt
bessel
betafunc
densbeta
denschi
densf
densgamma
densmises
densn
denspoisson
denst
gammafunc
gammafact
inverteps
loggamma
polygamma
probbeta
probbvn
probchi
probchi
probf
probf
probgamma
probmises
probmvn
probn
probpoisson
probt
probt
quanbeta
quanchi
quanf
quangamma
quanmises
quann

Al1.11 Ox exported mathematics functions

41

DQuanT
DRanBeta
DRanChi
DRanExp
DRanF
DRanGamma
DRanInvGaussian
DRanLogNormal
DRanlLogistic
DRanMises
DRanNormalPM
DRanStable
DRanT

DRanU

DRanU
DTailProbChi
DTailProbF
DTailProbNormal
DTailProbT
DTraceAB
DTrace
DVecsum
DecQRtMul
FGetAct
FIsInf
FIsNaN
FPPtDec
FPeriodogram
FftComplex
FftDiscrete
FftReal
IDecQRt
IEigValPoly
IEigen
IEigen
IEigenSym
IEigenSym
IGenEigVecSym
ITInvDet
IInvert
ILDLbandDec
ILDLdec
ILUPdec
IMatRank

quant
ranbeta
ranchi
ranexp

ranf
rangamma
raninvgaussian
ranlogn
ranlogistic
ranmises
rann
ranstable
rant

ranu

ranu
tailchi
tailf

tailn

tailt

trace (AB)
trace

sumr (A)
decqrmul
act

isinf

isnan
choleski
periodogram
fft

dfft

fft

decqr
polyroots
eigen

eigen
eigensym
eigensym
eigensymgen
invert
invert
decldlband
decldl
declu,determinant
rank

42 Appendix A1 Extending Ox
INullSpace nullspace
I01sNorm ols2c, o0ls2r
I01sQR 0ls2,0ls2
IRanBinomial ranbinomial
IRanLogarithmic ranlogarithmic
IRanNegBin rannegbin
IRanPoisson ranpoisson
IDecSVD decsvd
ISymInv invert
IntMatAlloc
IntMatFree
IntVecAlloc
LDLInv solveldl
LDLbandSolve solveldlband
LDLsolve solveldl
LUPsolve solvelu
MatABt AxB’

MatAB AxB

MatAct act

MatAdd A+c*B
MatAllocBlock

MatAlloc

MatAtB A’B
MatBSBt BSB’
MatBtBVec A=B-y; A’A
MatBtB B’B
MatBtSB B’SB
MatCopyTranspose

MatCopyVecc

MatCopyVecr

MatCopy

MatDup A =B
MatFreeBlock

MatFree

MatGenInvert 1 / A,decsvd
MatGetAt

MatI unit
MatNaN

MatRanNormal rann
MatRan ranu
MatReflect reflect
MatSetAt

MatStandardize standardize

MatTranspose

transpose operatot:

Al1.11 Ox exported mathematics functions

43

MatVariance
MatZero
MatZero
RanDirichlet
RanGetSeed
RanSetRan
RanSetSeed
RanSubSample
RanUorder
RanWishart
SetFastMath
SetInf
SetInvertEps
SetNaN
ToeplitzSolve
VecAlloc
VecDiscretize
VecDup
VecTranspose
VeccCopyMat
VecrCopyMat

variance
Zeros

Zeros
randirichlet
ranseed
ranseed
ranseed
ransubsample
ranuorder
ranwishart
use command line switch to turn off
= M_INF
inverteps

= M_NAN
solvetoeplitz

discretize

44 Appendix A1 Extending Ox

A1.11.3 Matrix function reference

c_abs, cdiv, c_exp, clog, cmul, c_sqrt

double c_abs(double xr, double xi);

bool c_div(double xr, double xi, double yr, double yi,
double *zr, double *zi);

void c_exp(double xr, double xi, double *yr, double *yi);

void c_log(double xr, double xi, double *yr, double *yi);

void c_mul(double xr, double xi, double yr, double yi,
double *zr, double *zi);

void c_sqrt(double xr, double xi, double *yr,double *yi);

Return value
c_abs returns the result.c_div returns FALSE in an attempt to divide by O,
TRUE otherwise. The other functions have no return value.

DBessel01

double DBesselO1(double x, int type, int n);
X in: z, point at which to evaluate
type in: character, type of Bessel functions’, ’y’, °1’, ’K’
n in: integer, 0 or 1: order of Bessel function

Return value
Returns the Bessel function.

DBetaFunc
double DBetaFunc(double dX, double dA, double dB);

Return value
Returns the incomplete beta functiéh (a, b).

DDens...

double DDensBeta(double x, double a, double b);

double DDensChi(double x, double dDf);

double DDensF(double x, double dDf1l, double dDf2);
double DDensGamma(double g, double r, double a);

double DDensMises(double x, double dMu, double dKappa);
double DDensNormal (double x);

double DDensPoisson(double dMu, int k);

double DDensT(double x, int iDf);

Return value
Value of density ak.

Al1.11 Ox exported mathematics functions 45

DecQRtMul
void DecQRtMul (MATRIX mQt, int cX, int cT, MATRIX mYt, int cY,
int cR);
mQt [cX] [cT] in: householder vectors of QR decompositiondf
mYt [cY] [cT] in: matrixY
out: Q'Y
cR in: row rank of X’

Return value
Computes)'Y.

Description
Performs multiplication by’ after a QR decomposition.

IDecSVD

int IDecSVD(MATRIX mA, int cM, int cN, VECTOR vW, int fDoU,
MATRIX mU, int fDoV, MATRIX mV, int fSort);

mA [cM] [cN] in: matrix to decomposeM > cN

out: unchanged
vW [cN] in: vector

out: the n (non-negative) singular valuesAdf
fDoU in: TRUE: U matrix of decomposition required
mU [cM] [cN] in: matrix

out: the matrixU (orth column vectors) of the de-
composition iffDoU == TRUE. Otherwise used
as workspacenU may coincide withnA.

fDoV in: TRUE: V matrix required
mV [cM] [cN] in: matrix
mV [cN] [cN] out: the matrixV” of the decomposition ifDoV ==

TRUE. Otherwise not referencedhv may coin-
cide withmU if mU is not needed.

fSort in: if TRUE the singular values are sorted in decreas-
ing order withU, V" accordingly.

Return value
0: success

k: if the k-th singular value (with index k - 1) has not been determined after

50 iterations. The singular values and corresponding should be correct for
indices> k.

Description
Computes the singular value decomposition.

DGamma, DGammaFunc

46 Appendix A1 Extending Ox

double DGamma(double z);
double DGammaFunc(double dX, double dR);

Return value
DGamma returns the complete gamma functib(x).
DGammaFunc returns the incomplete gamma functién ().

DLogGamma
double DLogGamma(double dA);

Return value
Returns the logarithm of the gamma function.

DPolyGamma
double DPolyGamma(double dA, int n);

Return value
Returns the derivatives of the loggamma functian= 0 is first derivative: di-
gamma function, and so on.

DProb...

double DProbBeta(double x, double a, double b);

double DProbBVN(double dLol, double dLo2, double dRho);
double DProbChi(double x, double dDf);

double DProbChiNc(double x, double df, double dNc);
double DProbF(double x, double dDf1, double dDf2);
double DProbFNc(double x, double dDfl, double dDf2, double dNc);
double DProbGamma(double x, double dR, double dA);
double DProbMises(double x, double dMu, double dKappa) ;
double DProbMVN(int n, VECTOR vX, MATRIX mSigma) ;
double DProbNormal (double x);

double DProbPoisson(double dMu, int k);

double DProbT(double x, int iDf);

double DProbTNc(double x, double dDf, double dNc);

Return value
Probabilities of value less than or equakto

DQuan...

double DQuanBeta(double x, double a, double b);

double DQuanChi(double p, double dDf);

double DQuanF (double p, double dDfl, double dDf2);
double DQuanGamma(double p, double r, double a);

double DQuanMises(double p, double dMu, double dKappa);
double DQuanNormal (double p);

double DQuanT(double p, int iDf);

Al1.11 Ox exported mathematics functions a7

Return value
Quantiles ap.

DGetlnvertEps

double DGetInvertEps(void);
double DGetInvertEpsNorm(MATRIX mA, int cA);

Return value
DGetInvertEps returns inversion epsilon;,,, SeeSetInvertEps.
DGetInvertEpsNormreturnse;,,||A||oo-

DRan...

double DRanBeta(double a, double b);
double DRanChi(double dDf);

double DRanExp(double dLambda) ;

double DRanF(double dDf1, double dDf2);
double DRanGamma(double dR, double dA);
double DRanInvGaussian(double dMu, double dLambda) ;
double DRanLogNormal(void);

double DRanLogistic(void);

double DRanMises(double dKappa) ;

double DRanNormalPM(void) ;

double DRanStable(double dA, double dB);
double DRanT(int iDf);

double DRanU();

Return value
Returns random numbers from various distributions.
DRanU generates unifornf0, 1) pseudo random numbers according to the active
generation method (s@anSetRan).
DRanNormalPM standard normals (PM = polar-Marsaglia).

DTall. ..

double DTailProbChi(double x, double dDf);

double DTailProbF (double x, double dDf1, double dDf2);
double DTailProbGamma(double x, double dR, double dA);
double DTailProbNormal (double x);

double DTailProbT(double x, int iDf);

Return value
Probabilities of values greater than

DTrace, DTraceAB

48 Appendix A1 Extending Ox

double DTrace(MATRIX mat, int cA);

double DTraceAB(MATRIX mA, MATRIX mB, int cM, int cN);
mA [cM] [cN] in: matrix
mB [cN] [cM] in: matrix

Return value
DTrace returns the trace df.
DTraceAB returns the trace of B.

DVecsum
double DVecsum(VECTOR vA, int cA);
vA[cA] in: vector

Return value
DVecsum returns the sum of the elements in the vector.

FftComplex, FftReal, FftDiscrete

void FftComplex(VECTOR vXr, VECTOR vXi, int iPower, int iDir);
void FftReal (VECTOR vXr, VECTOR vXi, int iPower, int iDir);
bool FftDiscrete(VECTOR vXr, VECTOR vXi, int cN, int iDir);

vXr[n] in: vector with real partp = 2*°ver (discrete FFT:
n = cN)
out: FFT (or inverse FFT) real part
vXi [n] in: vector with imaginary part; = 2i°¥e* (discrete
FFT:n = cN)
out: FFT (or inverse FFT) imaginary part
iPower in: the vector sizes igiFover
cN in: indicates whether an FFTifower > 1) or an

inverse FFT must be performetifower < 0)

Return value
FftDiscrete returnsrFALSE if there is not enough memory, TRUE otherwise.
Also see undefft anddfft.

FGetAcf, FGetAcfRun

bool FGetAcf (VECTOR vX, int cT, int cLag, VECTOR vAcf);
bool FGetAcfRun(VECTOR vX, int cT, int clLag, VECTOR vAcf);

vX [cT] in: variable of which to compute correlogram

cT in: number of observations

clag in: required no of correlation coeffs

vAcf [cLag] out: correlation coeffs 1. cLag (0. if failed); unlike

acf (), the autocorrelation at lag O (which is 1)
is not included.

Al1.11 Ox exported mathematics functions 49

Return value
FGetAcf uses the full sample means (the standard textbook correlogram),
wherea¥GetAcfRun uses the running means (leading to the proper correlation
between the variable and its lagzet Acf skips over missing values, inn contrast
toMatAcft. Also see undesicf andDrawCorrelogram.

FIsInf, FIsNaN
bool FIsNaN(double d);
bool FIsInf(double d);

d in: value to check

Description
ReturnsTRUE if the argument is infinity (Inf) or not-a-number (NaN) respect-
ively.

FPeriodogram
bool FPeriodogram(VECTOR vX, int cT, int iTrunc, int cS,
VECTOR vS, int iMode);

vX [cT] in: variable of which to compute correlogram
cT in: number of observations

iTrunc in: truncation parameten

cS in: no of points at which to evaluate spectrum
vS[cS] out: periodogram

iMode in: 0: (truncated) periodogram,

1: smoothed periodogram using Parzen window,
2: estimated spectral density using Parzen window (as option
1, but divided byc(0)).

Return value
Returns TRUE if successful, FALSE if out of memory.

FPPtDec
bool FPPtDec(MATRIX mA, int cA)
mA [cA] [cA] in: symmetric p.d. matrix to be decomposed

out: containsP

Return value
TRUE: no error;
FALSE: Choleski decomposition failed.

Description
Computes the Choleski decomposition of a symmetric pd matrixd = PP’.
P has zeros above the diagonal.

IDecQRt...

50 Appendix A1 Extending Ox

int IDecQRt (MATRIX mXt, int cX, int cT, int *piPiv, int *pcR);
int IDecQRtEx(MATRIX mXt, int cX, int cT, int *piPiv, VECTOR vTau);
int IDecQRtRank (MATRIX mQt, int cX, int cT, int *pcR);
mXt [cX] [cT] in: X' data matrix
out: householder vectors of QR decompositiorXof
holdsH in lower diagonal, and? in upper diag-
onal
piPiv[cX] in: allocated vector or NULL
out: pivots (if argumentis NULL on input, there will
be no pivoting)

pcR in: pointer to integer

out: row rank ofX’
vTau[cX] in: allocated vector

out: —2/h’'h for each vectoh of H
mQt [cX] [cT] in: output fromIDecQRtEx

Return value
IDecQRtEx returns 1 if successful, 0 if out of memory.IDecQRt and
IDecQRtRank return:

0: out of memory,
1: success,
2: ratio of diagonal elements ¢’ X) is large,

rescaling is adviced,
—1: (X'X)is (numerically) singular,
—2: combines 2 and -1.

Description
Performs QR decompositiolDecQRt amounts to a call tdDecQRtEx followed
by IDecQRtRank to determine the rank and return value.

IEigValPoly,|IEigen,EigVecDiv
int IEigValPoly(VECTOR vPoly, VECTOR vEr, VECTOR vEi, int cA);
int IEigen(MATRIX mA, int cA, VECTOR vEr, VECTOR vEi, MATRIX mE);
void EigVecDiv(MATRIX mE, VECTOR evr, VECTOR evi, int cA);
vPoly[cA] in: coefficients of polynomiat; ... an, (ag = 1).
out: unchanged.
mA [cA] [cAlin: unsymmetric matrix.
out: used as working spacé&EigVecReal: holds eigenvecs in
rows (eigenvalue is complex: row: is real, rowi + 1 is
imaginary part).
vEr [cA] out: real part of eigenvalues
vEi[cA] out: imaginary part of eigenvalues
mE [cA] [cAlin: NULL or matrix.
out: if INULL: holds eigenvecs in rows (eigenvalués complex:
row : is real, row; + 1 is imaginary part).

Al1.11 Ox exported mathematics functions 51

Return value
0 success

1 maximum no of iterations (50) reached
2 NULL pointer arguments or memory allocation not succeeded.

Description
IEigValPoly computes the roots of a polynomial, g8 yroots ().
IEigValReal computes the eigenvalues of a double unsymmetric matrix.
IEigVecReal computes the eigenvalues and vectors of a double unsymmetric
matrix. On output, the eigenvectors are standardized by the largest element.
IEigen computes the eigenvalues and optionally the eigenvectors of a double un-
symmetric matrix. On output, the eigenvectorsroéstandardized by the largest
element.EigVecDiv can be used for standardization: it takes the eigenvectors
and values fronTEigen as input, and gives the standardized eigenvectors on

output.

IEigenSym

int IEigenSym(MATRIX mA, int cA, VECTOR vEval, int fDoVectors);
mA [cA] [cA] in: symmetric matrix.

out: work space.
if fDoVectors # O0:
the rows contain the
normalized eigenvectors
(ordered).
vEv [cA] out: ordered eigenvalues (smallest first)
fDoVectors in: eigenvectors are to be computed

Return value
SeelEigValReal.

Description
IEigValSym computes the eigenvalues of a symmetric matrbEigVecSym
computes the eigenvalues and (normalized) eigenvectors of a symmetric matrix.

IGenEigVecSym
int IGenEigVecSym(MATRIX mA, MATRIX mB, VECTOR vEval,
VECTOR vSubd, int cA);
mA [cA] [cA] in: symmetric matrix.
out: the rows contain the normalized eigenvectors
(sorted according to eigenvals, largest first)

mB [cA] [cA] in: symmetric pd. matrix.

out: work
vEval [cA] out: ordered eigenvalues (smallest first)
vSubd [cA] out: index of ordered eigenvalues

cA in: dimension of matrix;

52 Appendix A1 Extending Ox

Return value
0,1,2: sedEigValReal; -1: Choleski decomposition failed.

Description
Solves the general eigenprobletn: = ABx, whereA and B are symmetric3
also positive definite.

lInvert, linvDet
int IInvert(MATRIX mA, int cA);
int IInvDet(MATRIX mA, int cA, double *pdLogDet, int *piSignDet) ;

mA [cA] [cAl in: ptr to matrix to be inverted
out: contains the inverse, if successful
pdLogDet out: thelogarithm of the absolute value of the de-
terminant ofA
piSignDet out: the sign of the determinant of; 0: singular;

—1, —2: negative determinant;-1, +-2: positive
determinant-2, +2: result is unreliable

Return value
0: success; 1,2,3: s@&DLdec.

Description
Computes inverse of a matrix using LU decomposition.

ILDLbandDec
int ILDLbandDec (MATRIX mA, VECTOR vD, int cB, int cA);
mA [cB] [cA] in: ptrto sym. pd. band matrix to be decomposed
out: contains thd, matrix (except for the 1's on the
diagonal)
vD[cA] out: the reciprocal oD (not the square root!)
cB in: 1+bandwidth
Return value
SeellDLdec.
Description

Computes the Choleski decomposition of a symmetric positive band matrix. The
matrix is stored as idec1ldlband.

ILDLdec
int ILDLdec(MATRIX mA, VECTOR vD, int cA);
mA[cA] [cA] in: ptrto sym. pd. matrix to be decomposed only

the lower diagonal is referenced;
out: the strict lower diagonal of A contains themat-
rix (except for the 1's on the diagonal)
vD[cAl out: the reciprocal of D (not the square root!)

Al1.11 Ox exported mathematics functions 53

Return value
0 noerror;

1 the matrix is negative definite;
2 the matrix is (numerically) singular;
3 NULL pointer argument

Description
Computes the Choleski decomposition of a symmetric positive definite matrix.

ILUPdec
int ILUPdec(MATRIX mA, int cA, int *piPiv, double *pdLogDet,
int *piSignDet, MATRIX mUt);
mA [cA] [cA] in: ptr to matrix to be decomposed
out: the strict lower diagonal of A contains themat-
rix (except for the 1's on the diagonal) the upper
diagonal containg’.

piPiv[cA] out: the pivot information

pdLogDet out: thelogarithm of the absolute value of the de-
terminant ofA

piSignDet out: the sign of the determinant of; 0: singular;

—1,—2: negative determinan#:-1, +2: positive
determinant:—2, +2: result is unreliable
mUt [cA] [cA] in: NULL or matrix
out: used as workspace
Return value

0 no error;

—1 out of memory;

> 1 the matrix is (humerically) singular;

the return value is one plus the singular pivot.

Description
Computes the LU decomposition of a matrix A as: PA = LU.

ILUPlogdet
int ILUPlogdet (MATRIX mU, int cA, int *piPiv, double dNormEps,
double *pdLogDet) ;

mU [cA] [cA] in: LU matrix, only diagonal elements are used

piPiv[cA] in: the pivot information (NULL: no pivoting)

dNormEps in: norm(A)*eps, use result from DGetin-
vertEpsNorm on original matrix A

pdLogDet out: thelogarithm of the absolute value of the de-

terminant ofA

Return value
Returns the sign of the determinantéf= LU P; 0: singular;—1, —2: negative
determinanti-1, +2: positive determinant:-2, +2: result is unreliable.

54 Appendix A1 Extending Ox

Description

Computes the log-determinant from the LU decomposition of a matrix A.

IMatRank
int IMatRank(MATRIX mA, int cM, int cN, double dEps,
bool bAbsolute);

mA [cM] [cN] in: cM by cN matrix of rankcN
out: unchanged
dEps in: tolerance to use
bAbsolute in: TRUE: usedEps, FALSE: dEps X horm

Return value
—1: failure: out of memory:2: failure: couldn't find all singular values;
> 0: rank of matrix.

Description
UsesIDecSVD to find the rank of amn x n matrix A.

IntMatAlloc, IntMatFree, IntVecAlloc
INTMAT IntMatAlloc(int cM, int cN);
void IntMatFree(INTMAT im, int cM, int cN);
INTVEC IntVecAlloc(int cM);
cM, cN in: required matrix dimensions

Return value

IntMatAlloc returns a pointer to the newly allocatel x cN matrix of integers
(INTMAT corresponds tant *x*), or NULL if the allocation failed, or itM was 0.
UseIntMatFree to free such a matrix.

IntVecAlloc returns a pointer to the newly allocateti vector of integers
(INTVEC corresponds tdnt *), or NULL if the allocation failed, or ifcM was
0. Use the standard C functidtree to free such a matrix.

The allocated types are a matrix or vectoirdggers there is no corresponding
type in Ox, and the allocated matrix cannot be passed directly to Ox code.

INullSpace
int INullSpace(MATRIX mA, int cM, int cN, bool fAppend);

mA [cM] [cM] in: cM by cN matrix of rankcN, cM > cN (allocated
size must beM by cM)
out: null space ofd is appended (fAppend==TRUE)
or mA is overwritten by null space.

Return value

—1: failure: couldn’t find all singular values, or out of memory;
> 0: rank of null space.

Al1.11 Ox exported mathematics functions 55

Description
UsesIDecSVD to find the orthogonal complemedt, m x m — n, ofanm x n
matrix A of rankn, n < m, such thatd*’ A* = I, A¥ A = 0.
Note that the append option requires tiahas full column rank (if not the last
m — n columns ofU are appended).

IOIsNorm

int I0lsNorm(MATRIX mXt, int cX, int cT, MATRIX mYt, int cY,
MATRIX mB, MATRIX mXtXinv, MATRIX mXtX, bool fInRows);

mXt [cX] [cT] in: X data matrix
out: unchanged

mYt [cY] [cT] in: Y data matrix
out: unchanged

mB [cY] [cX] in: allocated matrix
out: coefficients

mXtXinv [cX] [cX] in: allocated matrix or NULL
out: (X’X)~tif INULL

mXtX [cX] [cX] in: allocated matrix or NULL
out: X'X if INULL

fInRows in: if FALSE, inputismXt [cT] [c¢X],mYt [cT] [cY]

int I01sQR(MATRIX mXt, int cX, int cT, MATRIX mYt, int cY,
MATRIX mB, MATRIX mXtXinv, MATRIX mXtX, VECTOR vW);
mXt [cX] [cT] in: X data matrix
out: QR decomposition ok, but only if all three re-
turn argumentsB, mXtXinv, mXtX are NULL

mYt [cY] [cT] in: Y data matrix
out: Q'Y

mB [cY] [cX] in: allocated matrix or NULL
out: coefficients if INULL

mXtXinv [cX] [cX] in: allocated matrix or NULL
out: (X’X)~tif INULL

mXtX [cX] [cX] in: allocated matrix or NULL
out: X'X if INULL

vW[cT] in: vector

out: workspace

Return value

0: out of memory,
1: success,
2: ratio of diagonal elements ¢’ X) is large,

rescaling is adviced,
—1: (X'X)is (numerically) singular,
—2: combines 2 and -1.

56 Appendix A1 Extending Ox

void 01sQRacc(MATRIX mXt, int cX, int cT, int *piPiv, int cR,
VECTOR vTau, MATRIX mYt, int cY, MATRIX mB, MATRIX mXtXinv,
MATRIX mXtX)

mXt [cX] [cT] in: result fromIDecQRt

out: may have been overwritten
piPiv[cX] in: pivots (output fromIDecQRt)
pcR in: row rank of X’ (output fromIDecQRt)
vTau[cX] in: scale factors (output frorfDecQRt)

other arguments are as fi1sQR

Description
performs ordinary least squares (OLS).

IRanBinomial, IRanLogarithmic, IRanNegBin, IRanPoisson
int IRanBinomial(int n, double p);

int IRanLogarithmic(double dA);

int IRanNegBin(int iN, double dP);

int IRanPoisson(double dMu);

Return value
Returns random numbers from Binomial/Logarithmic/Negative bino-
mial/Poisson distributions.

ISyminv
int ISymInv(MATRIX mA, int cA);
mA[cA] [cA] in: ptrto sym. pd. matrix to be inverted

out: contains the inverse, if successful

Return value
0: success; 1,2,3: s@&DLdec.

LDLbandSolve

void LDLbandSolve(MATRIX mL, VECTOR vD, VECTOR vX, VECTOR vB,
int cB, int cA);

mL [cB] [cAl in: L from calling ILDLbandDec

vD[cA] in: the reciprocal oD

vX[cAl out: the solution vX (if {X == vB) then vB is over-
written by the solution)

vB[cAl in: pointer containing the r.h.s. dfz = b

cB in: 1+bandwidth

No return value.

Description
SolvesAx = b, with A = LDL' a symmetric positive definite band matrix.

Al1.11 Ox exported mathematics functions 57

LDLinv
void LDLInv(MATRIX mL, VECTOR vD, int cA);
mL [cA] [cA] in: ptr to a matrix of which the strict lower diagonal

must contain, from the Choleski decomposi-
tion. (the upper diagonal is not referenced);
out: the lower diagonal contains the inverse
vD[cAl in: contains the reciprocal @

No return value.

Description
Computes the inverse of a symmetric matfixL, D must be the Choleski de-
composition.
LDLsolve
void LDLsolve(MATRIX mL, VECTOR vD, VECTOR vX, VECTOR vB, int cA);
mL [cA] [cA] in: ptr to a matrix of which the strict lower diagonal
must contain. from the Choleski decomposition
computed usingLDLdec. (the upper diagonal is
not referenced);
vD [cA] in: contains the reciprocal dd
vX[cA] in: pointer containing the r.h.s. dfx = b;
vB[cAl out: contains the solutiom (if (vX == vB) then vB

is overwritten by the solution)
No return value.

Description
SolvesAx = b, with A = LDL’' a symmetric positive definite matrix.

LUPsolve
void LUPsolve(MATRIX mL, MATRIX mU, int *piPiv, VECTOR vB,int cA);
mL [cA] [cA] in: the strict lower diagonal contains thHe matrix
(except for the 1's on diag)
mU [cA] [cA] in: the upper diagonal containg: PA = LU out-
put fromILUPdec.
piPiv[cA] in: the pivot information P)
vB[cA] in: rhs vector of system to be solvedx = b.

out: containse.
No return value.

Description
SolvesAX = B, with A = LU a square matrix. Normally, this will be preceded
by a call toILUPdec. That function returnd.U stored in one matrix, which can
then be used for bothL. andmU.

58 Appendix A1 Extending Ox

MatAcf
MATRIX MatAcf (MATRIX mAcf, MATRIX mX, int cT, int cX, int mxLag);
mAcf [mxLag+1] [cX] out: correlation coefficients (0. if failed)

mX [cT] [cX] in: variable of which to compute correlogram
cT in: number of observations
mxLag in: required no of correlation coeffs

Return value
ReturnamAcf if successful, NULL if not enough observations.

MatAdd
MATRIX MatAdd(MATRIX mA, int cM, int cN, MATRIX mB, double dFac,
MATRIX mAplusB);

mA [cM] [cN] in: matrix A
mB [cM] [cN] in: matrix B
dFac in: scalarc
mAplusB[cM] [cN] out: A+ cB

Return value
returnsmAplusB =A + ¢B.

MatAB,MatABt,MatAtB,MatBSBt,MatBtSB,MatBtB,MatBtBVec
MATRIX MatAB(MATRIX mA, int cA, int cC, MATRIX mB,int cB,mat mAB);

mA [cA] [cC] in: matrix A
mB[cC] [cB] in: matrixB
mAB[cA] [cB] out: AB

MATRIX MatABt(MATRIX mA, int cA, int cC, MATRIX mB,
int cB, mat mABt);

mA [cA] [cC] in: matrix A
mB [cB] [cC] in: matrix B
mABt [cA] [cB] out: AB’

MATRIX MatAtB(MATRIX mA, int cA, int cC, MATRIX mB,
int cB, mat mAtB);

mA [cA] [cC] in: matrix A
mB [cA] [cB] in: matrix B
mAtB[cC] [cB] out: A’B

MATRIX MatBSBt(MATRIX mB, int cB, MATRIX mS,
int ¢S, MATRIX mBSBt);

mB [cB] [cS] in: matrix B

mS [cS] [cS] in: symmetric matrixS or NULL (equivalenttaS =
I)

mBSBt [cB] [cB] out: matrix containing3S B’

MATRIX MatBtSB(MATRIX mB, int cB, MATRIX mS,
int ¢S, MATRIX mBtSB);

Al1.11 Ox exported mathematics functions 59

MATRIX MatBtB(MATRIX mB, int cB, int ¢S, MATRIX mBtB);

mB [cB] [cS] in: matrix B
mBtB[cS] [cS] out: matrix containing3’ B
MATRIX MatBtBVec(MATRIX mB, int cB, int cS, VECTOR vY, MATRIX mBtB);
mB [cB] [cS] in: matrix B
vY [cS] in: vectory
mBtB[cS] [cS] out: matrix containindB — y)'(B — y)

Return value
MatAB returnsmAB =AB.
MatABt returnsmABt =AB'.
MatAtB returnsmAtB =A’B.
MatBSBt returnsmBSBt =BSB’.
MatBtSB returnsmBtSB =B’SB.
MatBtB returnsmBtB =B’ B.
MatBtBVec returnamBtB =(B — y)' (B — y).

MatAlloc, MatAllocBlock
MATRIX MatAlloc(int cM, int cN);
MATRIX MatAllocBlock(size_t cR, size_t cC);
cM, cN in: required matrix dimensions

Return value
Returns a pointer to the newly allocateld x cN matrix, orNULL if the allocation
failed, or if cM was 0. UseMatFree to free the matrix.

Description
MatAlloc(a,b) is the macro version which mapsMatAllocBlock(a,b).

MatCopy...
MATRIX MatCopy(MATRIX mDest, MATRIX mSrc, int cM,int cN);
MATRIX MatCopyTranspose (MATRIX mDestT, MATRIX mSrc,
int cM, int cN);
void MatCopyVecr (MATRIX mDest, VECTOR vSrc_r, int cM, int cN);
void MatCopyVecc (MATRIX mDest, VECTOR vSrc_c, int cM, int cN);

mSrc [cM] [cN] in: m x n matrix A to copy
vSrc_r [cM*cN] in: vectorizedm x n matrix (stored by row)
vSrc_c [cM*cN] in: vectorizedm x n matrix (stored by column)
mDest [cM] [cN] in: allocated matrix

out: copy of source matrix
mDestT [cN] [cM] in: allocated matrix

out: copy of transpose @iSrc

Return value
MatCopy and MatCopyTranspose return a pointer to the destination matrix
which holds a copy of the source matrix.

60 Appendix A1 Extending Ox

MatDup
MATRIX MatDup(MATRIX mSrc, int cM, int cN);
mSrc [cM] [cN] in: m x n matrix A to duplicate

Return value
Returns a pointer to a newly allocated matrix, which must be deallocated with
MatFree. A return value ofNULL indicates allocation failure.

MatFree, MatFreeBlock
void MatFree (MATRIX mA, int cM, int cN);
void MatFreeBlock(MATRIX m);
mA [cM] [cN] in: matrix to free, previously allocated using
MatAlloc or MatDup

No return value.

Description
MatFree(m,a,b) is the macro version which mapsiatFreeBlock (m).

MatGenlnvert
MATRIX MatGenInvert(MATRIX mA, int cM, int cN, MATRIX mRes,
VECTOR vSval);
mA [cM] [cN] in: m x n matrix A to invert
mRes [cN] [cM] in: allocated matrix (may be equal i)
out: generalized inverse of using SVD
vSval[min(cM,cN)] in: NULL or allocated vector
out: sing.vals ofd (if m > n) or A’ (if m < n);

Return value
INULL: pointer to mRes indicating success;
NULL: failure: not enough memory or couldn’t find all singular values.

Description
UsesISvVDdec to find the generalized inverse.

MatGetAt

double MatGetAt(MATRIX mSrc, int i, int j);
mSrc in: matrix
i in: row index
j in: column index

Return value
ReturnsmDest [1] [j].

Matl

Al1.11 Ox exported mathematics functions 61

MATRIX MatI(MATRIX mDest, int cM);
mDest [cM] [cM] in: allocated matrix
out: identity matrix

Return value
Returns a pointer t@Dest.

MatNaN
MATRIX MatNaN(MATRIX mDest, int cM, int cN);
mDest [cM] [cN] in: allocated matrix
out: matrix filled with theNaN value (Not a Num-
ber)

Return value
Returns a pointer t@Dest.

MatRan, MatRanNormal
MATRIX MatRan(MATRIX mA, int cR, int cC);
MATRIX MatRanNormal (MATRIX mA, int cR, int cC);
mA [cR] [cC] in: allocated matrix
out: filled with random numbers

Return value
Both functions returma
MatRan generates uniform random numbetstRanNormal standard normals.

MatReflect, MatTranspose

MATRIX MatReflect(MATRIX mA, int cA);
MATRIX MatTranspose(MATRIX mA, int cA);

mA [cA] [cA] in: matrix
out: transposed matrix.

Return value
Both return a pointer taA.

Description
MatTranspose transposes a square matrix. MatReflect reflects a square matrix
around its secondary diagonal.

MatSetAt
void MatSetAt(MATRIX mDest, double d, int i, int j);

62 Appendix A1 Extending Ox

mDest in: matrix to change
out: changedmDest[i][j] = d
d in: value
i in: row index
j in: column index

No return value.

MatStandardize
MATRIX MatStandardize (MATRIX mXdest, MATRIX mX, int cT, int cX);

mXdest [cT] [cX] out: standardized mX matrix
mX [cT] [cX] in: data which to standardize
cT in: number of observations

Return value
Returns mXdest if successful, NULL if not enough observations.

MatVariance
MATRIX MatVariance (MATRIX mXtX, MATRIX mX, int cT, int cX,
bool fCorr);

mXtX [cX] [cX] out: variance matrix (fCorr is FALSE) or correlation
matrix (fCorr is TRUE)

mX [cT] [cX] in: variable of which to compute correlogram

cT in: number of observations

Return value
Returns mXtX if successful, NULL if not enough observations.

MatZero
MATRIX MatZero(MATRIX mDest, int cM, int cN);
MatZero [cM] [cN] in: allocated matrix

out: matrix of zeros

Return value
Returns a pointer t@Dest.

RanDirichlet

void RanDirichlet (VECTOR vX, VECTOR vAlpha, int cAlpha);
vX[cAlpha - 1] out: random values
vAlpha[cAlpha] in: shape parameters

RanGetSeed

int RanGetSeed (int *piSeed, int cSeed);
piSeed in: NULL (only returns the seed count), or array witBeed in-

teger elements
piSeed out: current seeds

Al1.11 Ox exported mathematics functions 63

Return value
Returns the number of seeds used in the current generator..

RanNewRan, RanSetRan
void RanSetRan(const char *sRan);
void RanNewRan (DRANFUN fnDRanu,
RANSETSEEDFUN fnRanSetSeed, RANGETSEEDFUN fnRanGetSeed) ;

sRan in: string, one of'PM", "GM", "LE"
fnDRanu in: pointer to new random number generator (same
syntax adRanl)
fnRanSetSeed in: pointer to new set seed function (same syntax as
RanSetSeed)
fnRanGetSeed in: pointer to new get seed function (same syntax as
RanSetGeed)
Description
RanSetRan chooses one of the built-in generatoBanNewRan installs a new
generator.
RanSetSeed
void RanSetSeed(int *piSeed, int cSeed);
piSeed in: NULL (means areset to initial seed), or array wiffeed new

seeds (which may not be 0)

Description
Sets the seeds for the current random number generator.

RanUorder, RanSubSample, RanWishart
void RanUorder (VECTOR vU, int cU);

void RanSubSample(VECTOR vU, int cU, int cN);
void RanWishart(MATRIX mX, int cX);

vU [cU] out: random values

mX [cX] [cX] out: random values
SetFastMath
void SetFastMath(bool fYes);

fYes in: TRUE: switchesFastmathmode on, else switches it off
Description

WhenFastMathis active, memory is used to optimize some matrix operations.
FastMathmode uses memory to achieve the speed improvements. The following
function areFastMathenhancedtatBtB, MatBtBVec

SetinvertEps

64 Appendix A1 Extending Ox

void SetInvertEps(double dEps);
dEps in: sets inversion epsiloa,, to dEps if dEps > 0, else to the
default.

Description

The following functions return singular status if the pivoting element is less

than or equal t@;,,,,: ILDLdec, ILUPdec, ILDLbandDec, I0rthMGS. Less than
10¢€;y,, IS used byI01sQR.

A singular value is considered zero when less th@A||o10€;,, in
MatGenInvert.

The default value fog;,,, is 1000 x DBL_EPSILON.

Setinf, SetNaN

void SetNaN(double *pd);

void SetInf (double *pd);
*pd out: setvalue

Description
Sets the argument to infinity {nf) or not-a-number (NaN).

ToeplitzSolve

void ToeplitzSolve(VECTOR vR, int cR, int cM, MATRIX mB,
int cB, VECTOR v_1);

vR[cR] in: vector specifying Toeplitz matrix
cM in: dimension of Toeplitz matrix,cM > cR, re-
mainder ofvR is assumed zero.
mB [cM] [cB] in: ¢cM x cB rhs of system to be solved
out: containsX, the solutiontaAX = B
v_1[cM] in: work vector
out: changedy_1T[0] is the logarithm of the determ-
inant

Return value
0: success; 1: singular matrix or 1 is NULL.

Description
SolvesAX = B whenA is symmetric Toeplitz.

VecAlloc
VECTOR VecAlloc(int cM);
cM in: required size of vector

Return value
Returns a pointer to the newly allocated vectorNGLL if the allocation failed,
or if cMwas 0.

Al1.11 Ox exported mathematics functions 65

Description
A vector allocated witlvecAlloc may be freed by using the standard C function
free.

VecrCopyMat, VeccCopyMat
void VecrCopyMat (VECTOR vDest_r, MATRIX mSrc, int cM, int cN);
void VeccCopyMat (VECTOR vDest_c, MATRIX mSrc, int cM, int cN);

vDest_r [cM*cN] in: allocated vector

out: vectorizedn x n matrix (stored by row)
vDest_c [cM*cN] in: allocated vector

out: vectorizedn x n matrix (stored by column)
mSrc [cM] [eN] in: m x n source matrix

No return value.

VecDup
VECTOR VecDup(VECTOR vSrc, int cM);
vSrc[cM] in: m vector to duplicate

Return value
Return a pointer to the newly allocated destination vector, which holds a copy of
the source vector. A return value MfLL indicates allocation failure.

VecDiscretize
VECTOR VecDiscretize(VECTOR vY, int cY, double dMin, double dMax,
VECTOR vDisc, int cM, VECTOR vT, int iOptiomn);

vY[cY] in: T vector to discretize
dMin in: first point
dMax in: last point, ifdMin == dMax, the data minimum
and maximum will be used
vDisc[cM] in: m vector
out: discretized data
vT[cY] in: NULL or T vector

out: if 'NULL: points (x-axis)
Return value
Return a pointer teDisc, which holds the discretized data.

VecTranspose
VECTOR VecTranspose(VECTOR vA, int cM, int cN);
vA[cM * cN] in:. M x N matrix stored as vector

out: N x M transposed matrix.
Return value
Returns a pointer toA.
Description
VecTranspose transposes a matrix which is stored as a column.

Appendix A2
Modelbase and OxPack

OxPack allows for interactive use ofMadelbase-derived class in cooperation with
GiveWin. This can be achieved solely by adding Ox code — no special Windows pro-
gramming is required (but it only works under Windows). In particular, it is possible to
create dialogs, and defiffest menu entries.

The following three captures show the OxPack menus, after estimating a model with
the Arfima package:

. Arfima - OxPack =]
File s Model Test Help

2z

Fun t DFD
un Garch &

Add/Remove Package...

. Arfima - OxPack M=l

File Package QElsEIN Test Help

mlwlﬂl @l Formulate...
Model Settings...
Estimate. ..

Dptions...

<+ Arfima - OxPack =]
File Package todel

D) o o) e e s

) Forecast...
Testitem A

Test Surmmary

Exclusion Restrictions...
Linear Restrictions...

Before a package can be used, it must be added usinBatieage menu. This
menu is also used to choose a package to run. The items okdbel menu are
predefined, but the content of dialogs is determined by the packageleShmenu is
fully configured from the package.

e Model/Formulate

66

67

This brings up théModel Formulation dialog:

Data selection

Delete | todel Datahase
| [& []
Mew Model Constant DLpenrg oK
— Setys——— DDUM?I3 Canstant
DDUMI02912 DURM?93 Cancel |
Clear | DDUM?3
: DouUMa12
£ variable DDLpciat &I
Hvarighle DLPCtotlKsa .
DUM302 Special
DuU302912 Constant
nul Trend
LPCtatlJK Season
DDUKI02912
DDLPCtot Uk sa
CumDLFCtot K sa
LPCtatUksa —Lag length
Change Database © Query
Deselect Al Becall. | ISCO'I_I'S.in? j o |D :’

OxPack callsSendVarStatus () in the package to determine the type of vari-
ables available to build the model. This is used to set the buttons on the left.
Then it callsSendSpecials () to see if any special variables are available (here
they are: Constant, Trend and Season).

e Model Functions
Model functions are used to define additional model variables. This stage is op-
tional, and not used in the Arfima package; in the DPD package they are used to
define GMM-type instruments:

Functions
Created Functions Database
Gmrnin.1.1) MO
YEAR
ERP Functions
WWAGE
CAP
INDOUTPT Gmmlevel
n
e
k.
e
Delete Lag!
_ ouee | -
Lag?
r 3

The functions dialog appears immediately after formulatic®eifdFunctions
returns a non-zero value.

Appendix A2 Modelbase and OxPack

e Model/Model Settings
The model settings determine the remaining model specification, here:

Settings

ARMA
AR arder 4
k4 arder 4
Fix AR orders 1,23
Fix hd& arders | 1.2 |
Fractional parameter d
@& Estimate d
O Fixd
at: 0
Treatrment of mean
#® Mone (orusing Constant as regressar)
O Deviation from sample mean
O Fix mean
at 0

(0] | Cancel |

OxPack obtains the contents of the dialog by calling $lkedDialog func-
tion: SendDialog("0OP_SETTINGS"). When the user press&kK, OxPack calls
ReceiveDialog("OPSETTINGS", ...), where the remaining arguments give
the user-specified values.

e Model/Estimate
OxPack callsSendMethods () to determine the available estimation meth-
ods. Then, if OK is pressed OxPack first callReceiveData() and
ReceiveModel (), to allow the package to extract the data and model for-
mulation using the'0xPackGetData" function. (The package implements this
function call as a string to avoid a link error when using the package directly
from Ox.) Next, theEstimate function is called.

e Model/Options
Options refer to settings which may be less frequently changed. When OxPack
callsSendDialog("OP_OPTIONS"), the defaultlodelbase implementation al-
lows for the maximization options to be set.

e Test menu
The menu entries are determined from the return vallgeaMenu ("Test").
The package can again use dialogs to allow the user to choose options.

OxPackDialog 69

OxPackDialog
"OxPackDialog" (const asDialog, const asOptions, const asValues);
asDialog in: array, dialog definition
asOptions in: address of variable
out: array with variable labels
asValues in: address of variable

out: array with dialog values

Return value
TRUE if OK is pressedfALSE otherwise.

Description
0xPackDialog() is only available when running via OxPack.
TheasDialog argument is an array of arrays, with each entry consisting of just
a text label, or of four fields defining the edit control:

(1) textlabel

(2) control type
(3) control value
(4) control label

An example is:

{ { "GARCH(p,@)" 1},

{ "p =", CTL_INT, m_cP, "p" },

{ "q =", CTL_INT, m_cQ, "q" },

{ "Startup of variance recursion"},

{ "Condition", CTL_RADIO, m_iInitMethod, "init"},

{ "Mean variance", CTL_RADIO},

{ "Estimate", CTL_RADIO},

{ "Model settings"},

{ "Student-t", CTL_CHECK, m_bStudent, "student"}
}

Possible values for the field type are:

CTL_LABEL textlabel

CTL_CHECK checkbox (0 or1)
CTLRADIO radio button

CTL_INT integer

CTL_DOUBLE double

CTL_STRING string

CTL_STRMAT matrix, edited as a string

The field value gives the current value of the edit field. Radio buttons are grouped:
only the first has a value. The last item is a field label, this can be used to identify
the return value; only entries with a field label have a return value.

If the user pressedK in the dialog, the results are returned in the remaining two
arguments. FoasOptions this is the list of field labels. in the above example it
would be

70 Appendix A2 Modelbase and OxPack

{ npn s ||q|| s n init " s "student " }
The selected values are returnec#values. For the example it could be:
{1,1,2,0 }

OxPackGetData

"OxPackGetData" (const sType) ;
"OxPackGetData" (const sType, const iVarType);
sType in: string, type of data to obtain from OxPack
iType in: int, variable group (only wheaType equals'SelGroup")

Return value

sType returns

"Functions" array of function definitions. Each array entry is an array of
fouritems: function name, variable name, first argument (in-
teger), second argument (integer). Se@dFunctions ()
for an example.

"Matrix" Ty x kg data matrix

"Method" array with 3 integers: estimation method, number of (static)
forecasts, 0 or 1 (recursive or not)

"Names" array withk, strings, database variable names

"Sample" array with 5 integers, database sample: frequency, yearl,

periodl, year2, period2

"SelGroup" 3k array, specifying name, start lag, end lag of the
selection group. This can be used as input for
Database: :Select ().

"SelSample" array with 4 integers, estimation sample: yearl, periodl,
year2, period2

Description
OxPackGetData() is only available when running via OxPack. See
Modelbase: :ReceiveModel () and Modelbase: :ReceiveData() for an
example.

Modelbase::ReceiveData

virtual ReceiveData();

No return value.

Description
Called by OxPack as part of estimation, prioRteceiveModel (). The default

implementation creates the database, and stores the model data in the database,

also sed@xPackGetData(). For example, iffodelbase:

Modelbase: :ReceiveDialog 71

decl freq, yearl, periodl, year2, period2;
[freq, yearl, periodl, year2, period2] = "OxPackGetData"("Sample") ;

Database(); // create the database
Create(freq, yearl, periodl, year2, period2);

Append ("0xPackGetData" ("Matrix"), "OxPackGetData"("Names"), 0);
Deterministic(FALSE) ;

DeSelect();

Modelbase::ReceiveDialog

virtual ReceiveDialog(const sDialog, const asOptions,
const aValues);

sDialog in: string, dialog name
asOptions in: address of variable

out: array with variable labels
asValues in: address of variable

out: array with dialog values
No return value.

Description
ReceiveDialog() is called by OxPack after the user pres€dsin one of the
predefined dialogs. The predefined dialogs are:
"OP_SETTINGS" Model settings dialog
"OP_OPTIONS" Options dialog
In this case, the contents ak0ptions andasValues are as described under
OxPackDialog() above.
ReceiveDialog() is also called when the user executes one ofTést menu
commands. BecausendDialog() is always called first, there are two possib-
ilities:
(1) SendDialog() implements the dialog.
The contents ofasOptions and asValues are as described under
OxPackDialog() above.
(2) SendDialog() does notimplement the dialog.
ReceiveDialog() is still called, to allow the menu command to be ex-
ecuted. It is also possible to usexPackDialog" at this stage to imple-
ment a dialog.

Modelbase::ReceiveModel
virtual ReceiveModel();

Description
Called by OxPack as part of estimation, prior E8timate(). The de-
fault implementation extracts the model formulation from OxPack, also see
OxPackGetData(). For example, ifModelbase

72 Appendix A2 Modelbase and OxPack

// get selection of database variables
Select (Y_VAR, "OxPackGetData"("SelGroup", Y_VAR));
Select (X_VAR, "OxPackGetData"("SelGroup", X_VAR));
ForceYlag(Y_VAR);

// get selected sample
decl freq, yearl, periodl, year2, period2;
[yearl, periodl, year2, period2] = "OxPackGetData'"("SelSample");
ForceSelSample(yearl, periodl, year2, period2);

decl imethod; // get method
[imethod, m_cTforc, m_bRecursive] = "OxPackGetData"("Method");
SetMethod (imethod) ;

Modelbase::SendDialog

virtual SendDialog(const sDialog);
sDialog in: string, dialog name

Return value
Returns an array of arrays as described for #k®ialog argument under
0xPackDialog. Returns 0 if the dialog is not implemented; in this case it is pre-
ferred to returModelbase: : SendDialog(sDialog) to allow theModelbase
default.

Description
Called by OxPack to determine the dialog content.

Modelbase::SendFunctions
virtual SendFunctions();

Return value
Returns an array of which each item is an array of three strings: function name,
label of first argument, label of second argument. Returns O if functions are not
implemented.

Description
Called by OxPack to determine if additional functions are used as part of the
model formulation process. For example, the DPD class uses:

return
{ {"Gmm", "Lagl", IILag2II}’
{"GmmLevel", "Lag length", "1=Diff O=Lag"}
g g g

};
In this case, the value received from a calt @xPackGetData" ("Functions")
could be:

{ {"Gmm", ||n||’ 1’ 2}’

{"GmmLevel", "y", 1, 0},
{"GmmLevel", "w", 1, O}
}

Modelbase: : SendMenu 73

Modelbase::SendMenu

virtual SendMenu(const sMenu) ;
sMenu in: name of menu, currently onNTest"

Return value
Returns an array of which each item is an array of two strings: menu command
text, followed by the menu command identifier. Returns 0O if the menu is not
implemented.

Description
Called by OxPack to determine the content of the test menu. For example, the
Arfima class uses:

if (sMenu == "Test")
{ return
{{ "&Graphic Analysis", "OP_TEST_GRAPHICS"},

{ "&Forecast...", "OP_TEST_FORECAST"},

O’

{ "&Test Summary", "OP_TEST_SUMMARY"},

O’

{ "Exclusion Restrictioms...", "OP_TEST_SUBSET"},
{ "Linear Restrictioms...", "OP_TEST_LINRES"}
};

}

The ampersand in the command text indicates a short-cut character (will be un-
derscored in the menu). The ellipse is used to indicate to the user that a dialog
will follow. The entry of O paints a separator between menu items.

The menu identifier is first passed $endDialog() to allow the package to
implement a dialog (or return O to skip the dialog). Then it is passed to
ReceiveDialog() to execute the action.

The OP_TEST...identifiers used in the example are predefined, allowing a con-
nection to the toolbar buttons. (However, other identifiers may also be used.) The
complete list of predefined identifiers is:

"OP_TEST_-GRAPHICS" Graphic Analysis
"OP_TEST_GRAPHREC" Recursive Graphics
"OP_TEST_FORECAST" Forecasts
"OP_TEST_DYNAMICS" Dynamic Analysis

"OP_TEST_TEST" Test... (choose from a dialog)
"OP_TEST_SUMMARY" Test Summary
"OP_TEST_SUBSET" Exclusion Restrictions
"OP_TEST_LINRES" Linear Restrictions

The last two entries are special, in that predefined dialogs appear.
The subsequent restrictions test is a Wald test implemented via
Modelbase: :TestRestrictions().

74 Appendix A2 Modelbase and OxPack

Modelbase::SendMethods
virtual SendMethods();

Return value
Returns an array of which each item is an array of a strings and three integers:
estimation method label, method identifier, O or 1 (recursive estimation allowed),
0 (currently unused).

Description
Called by OxPack to determine the available estimation methods. For example, a
subset of the Arfima class methods are:

return
{ { "Maximum Likelihood", M_MAXLIK, FALSE, 0},
{ "Non-linear Least Squares", M_NLS, FALSE, 0},
{ "Modified Profile Likelihood", M_MAXMPLIK, FALSE, 0}
};

Modelbase::SendResults

virtual SendResults(const sType);
sType in: string, result type

Return value
Returns the requested results, or 0 if not available.

Description
Used by OxPack to extract additional estimation results.

Modelbase::SendSpecials
virtual SendSpecials();

Return value
Returns 0 if there are no special variables. Returns an array of strings listing the
special variables otherwise.

Description
Used by OxPack to determine the content of the special variables listbox in the
model formulation dialog. The default implementation retuffSonstant",
"Trend", "Season"}.

Modelbase::SendVarStatus

virtual SendVarStatus();

Return value
Returns an array, where each item is an array defining the type of variable:

A2.1 Adding support for a Batch language 75

(1) string: status text,

(2) character: status letter,
(3) integer: status flags,
(4) integer: status group.

Description
Called by OxPack to determine the variable types which are available in the
model formulation dialog. For example, the Modelbase default is:

return
{{ "&Y variable", ’Y’, STATUS_GROUP + STATUS_ENDOGENOUS, Y_VAR},
{ "&X variable", ’X’, STATUS_GROUP, X_VAR}};

The status text, and is used on the data selection dialog button. The status letter
used to indicate the presence of the status. The status flags can be:

STATUS_ENDOGENQUS: apply to first (non-special) variable at lag O;
STATUS_MULTIVARIATE: apply to all (non-special) variables at lag O;
STATUS_GROUP: is a group (each variable is in only one group);
STATUS_GROUP2: is a second group (each variable is only in one of each
group);

STATUS_ONEONLY: only one variable can have this status.

e STATUS_SPECIAL: apply to all special variables;

e STATUS_TRANSFORM: is a transformation;

Some flags can be combined by adding the values together.
As a second example, consider the status definitions of the DPD class:

return
{{ "&Y variable", ’Y’, STATUS_GROUP + STATUS_ENDOGENOUS, Y_VAR},
{ "&X variable", ’X’, STATUS_GROUP, X_VAR},

{ "&Instrument", ’I’, STATUS_GROUP2, I_VAR},

{ "&Level instr",’L’, STATUS_GROUP2, IL_VAR},

{ "Yea&r", ’r’, STATUS_GROUP + STATUS_ONEONLY, YEAR_VAR},
{ "I&ndex", ’n’, STATUS_GROUP + STATUS_ONEONLY, IDX_VAR}
};

A2.1 Adding support for a Batch language

Modelbase::Batch

virtual Batch(const sBatch, ...);
sBatch in: a string with name of the batch command
in: zero or more batch arguments

Return value
Should returnTRUE if the batch command was corre@ALSE if there was a
syntax error.

76 Appendix A2 Modelbase and OxPack

Table A2.1 Batch commands handled by OxPack.

derived

estimate ("METHOD'="OLS”, YEAR%-1PERZO,
YEAR2-1PER2-0,FORGC=0,INIT=0) ;

nonlinear {..}

model { ...}

package("name') ;

progress;

system { ...}

testgenres { ...}

testlinres { ..}

Description
All Batch commands are passed to the Ox class, with the exception of thos listed
in Table A2.1.
The arguments of the batch command are passed separately. For example, when
the batch call is

test("ar", 1, 2);

this function is called as
Batch("test", "ar", 1, 2);

Note that batch commands can have a variable number of arguments, so
test("ar", 1, 2);

is a valid call, and the Ox class should use default values for the missing argu-
ments.

Modelbase::BatchMethod

virtual BatchMethod(const sMethod);
sMethod in: a string with the first argument of thestimate
batch command

Return value
Should return the index of the method type.

Description
This function is called immediately after processing &keimate batch com-
mand. When writing batch code, OxPack uses the return value from GetMeth-
odLabel() to determine the first argumenteftimate. Therefore, the input
argument should match the possible return valuegeaiethodLabel (), and
the return value the index.

Modelbase: :BatchVarStatus 77

Modelbase::BatchVarStatus

virtual BatchVarStatus(const sTypes, const vcTypes);

sTypes in: a string with the type letters of theystem com-
mand
vcTypes in: the number of variables for each type

Return value
Should return the index of the model class

Description
This function is called immediately after processing égetem batch command

(which is otherwise handled by OxPack), but only if the model has more than
one model class. In that case, it allows the Ox class to determine an appropriate

model class based on the variable types.
For example, when the batch code is:

system
{

Y = InflatQ;

Z = Constant, D75Q2, D79Q3, "Q2-Q3";
}

The call corresponds to

BatchVarStatus("YZ", <1,4>);

It is used, for example, by PcGive: when there is more then one Y variable, and

no A in the type, PcGive can default to multivariate estimation.

Modelbase::GetBatchModelSettings
virtual GetBatchModelSettings();

Return value

It should return the correct batch code as a string, but need not write the com-

mands which are listed in Table A2.1.

Description

This function is called whenever OxPack needs the batch code for the current

model.

Appendix A3

Using OxGauss

A3.1 Introduction

Ox has the capability of running a wide range of Gayssgrams. Gauss code can be
called from Ox programs, or run on its own. The formal syntax of OxGauss is described
in Chapter A5. Section A3.7 lists some of the limitations of OxGauss. The remainder
of this chapter gives some examples on its use.

A3.2 Running OxGauss programs from the command
line

As an example we consider a small project, consisting of a code file that contains a
procedure and an external variable, together with a code file that includes the former and
calls the function. We shall always use therc extension for the OxGauss programs.

... samples/oxgauss/gaussfunc.src

proc(0)=gaussfunc(a,b);
"calling gaussfunc";
retp(a+_g_basexeye(b));
endp;

#include gaussfunc.src;

_g_base = 20;
z = gaussfunc(10,2);
"result from gaussfunc" z;

To run this program on the command line, enter

oxl -g gausscall.src

1GAUSS is a trademark of Aptech Systems, Inc., Maple Valley, WA, USA

78

A3.3 Running OxGauss programs from GiveWin 79

Which produces the output:

0x version 3.00 (Windows) (C) J.A. Doornik, 1994-2001
calling gaussfunc
result from gaussfunc
30.000000 10.000000
10.000000 30.000000
If there are problems at this stage, we suggest to start by reading the first chapter of

the ‘Introduction to Ox’ (Doornik and Ooms, 2001).

A3.3 Running OxGauss programs from GiveWin

Using Ox Professional, the OxGauss program can be loaded into GiveWin. The syntax
highlighting makes understanding the program easier:

I8 GiveWin - gausscall src
File Edit Search “iew Tools Modules Window Help

|ien e, B A E MG
: ol

7 Data Files B gausscall src

(3 Graphics Files #include gaussfunc.sre;

E Text Files
~[Z] Results g base = 20;

"result frem gaussfunc” =;

Click onRun (the running person) to execute the program. This runs the program using
the OxGaussapplication, with the output in a window entitlgdxGauss Session.
GiveWin will treat the file as an OxGauss file if it has therc, .g or .oxgauss
extension. If not, the file can still be run by launchi@xGaussfrom the GiveWin
workspace window.

A3.4 Calling OxGauss from Ox

The main objective of creating OxGauss was to allow Gauss code to be called from Ox.
This helps in the transition to Ox, and increases the amount of code that is available to
users of Ox.

The main point to note is that tl@xGauss code lives inside tgeuss namespace
In this way, the Ox and OxGauss code can never conflict.

Returning to the earlier example, the first requirement is to make an Ox header file
for gaussfunc.src. This must declare the external variables and procedures explicitly
in thegauss namespace:

80 Appendix A3 Using OxGauss

... samples/oxgauss/gaussfunc.h
namespace gauss

{
extern decl _g_base;
gaussfunc(const a, const b);

Next, the OxGauss code must be imported into the Ox program. #Thport
command has been extended to recognize OxGauss imports by prefixing the file name
with gauss: :, as in the following program:

.. samples/oxgauss/gausscall.ox

#include <oxstd.h>

#import "gauss::gaussfunc"

main()

{
gauss::_g_base = 20;
decl z = gauss::gaussfunc(10,2);
println("result from gaussfunc", z);

When the OxGauss functions or variables are accessed, they must also be prefixed
with the namespace identifigauss: :. The output is:

calling gaussfunc

result from gaussfunc
30.000 10.000
10.000 30.000

A3.5 How does it work?

When an OxGauss programis run, it automatically includestfiénclude/oxgauss. ox
file. This itself imports the required files:

#define 0X_GAUSS

#import <g2ox>

#import <gauss::oxgauss>

These import statements lead g@ox.h and oxgauss.h being included. The ma-
jority of the OxGauss run-time system is g2ox.ox. The keywords are largely in
oxgauss . src, because they cannot be defined in Ox (however keyword functions can
be declared by prefixing them witxtern "keyword", Seeoxgauss.h).

A3.6 Some large projects

The objective now is to give several serious examples, discussing some of the issues
that can be encountered. The code for these is available on the internet.

A3.6 Some large projects 81

A3.6.1 DPD98 for Gauss

Download and install DPD fromww.ifs.org.uk/econometindex.shtml (for ex-
ample in ox/packages/DPD98 for Gau$£)PD stands for dynamic panel data.

Rename file The main file isdpd98. run, so rename that tapd98. oxgauss to get
syntax highlighting and the GiveWiRun button. Windows users using Ox Profes-
sional may note that now it can be run directly from the Explorer window by clicking
on the file.

Fix for OxGauss syntax There are several warnings that ‘dot part of number, not dot
operator’, which happens when writing for example:xx. It is safer to insert some
spacing or a 0. There are also two errors:
dpd98.prg (411): ’gauss::fms’ undeclared identifier
dpd98.prg (412): ’gauss::obs’ undeclared identifier
If you are in GiveWin or OxEdit, jump to these errors by double-clicking on the first.
The lines

fms=fms+mul;

obs=obs+n;
are problematic becauses andobs are used on the right-hand side before they exist.
This is quickly fixed by inserting:
fms=0;
obs=0;
at the top oldpd98. oxgauss.

Convert data files Running the modified program gives twice the ‘Invalid .FMT or
.DAT file’ error message, before falling over an array indexing problem (note that in-
dexing errors are always reported with element O the first element, which is the Ox
convention). The reason is that old style data sets (v\#2/.dat) must be converted

to the new format (v96dat). The program to do this conversionds/1ib/dht2dat.

The conversion can be run from the command line as:

oxl lib/dht2dat auxdata.dht auxdatal.dat

oxl lib/dht2dat xdata.dht xdatal.dat

Now dpd98.oxgauss must be adjusted to usmxdatal andxdatal (in the open
commands).

Running the program As a final change sdtatto one:

@ Set bat=1 to use in batch mode @ bat=1;
and the program, which is more than 2000 lines, will run successfully.

2PcGive also incorporates DPD for panel data estimation. And there a DPD package for
Ox, which can also be used interactively with Ox Professional. Therefore, there is no reason to
attempt to call DPD98 from Ox.

82 Appendix A3 Using OxGauss

A3.6.2 BACC2001

Download BACC (for Bayesian Analysis, Computation, and Communica-
tion) from www.econ.umn.edu/ bacc/bacc2001/. The Gauss version is
baccWinGaussUse.zip; unzip this to a temporary folder.

Installation BACC is library based, and the files need to be copied to their correct
location:

e ox/oxgauss/lib

Copy1ibPCBACC. 1cgto this folder.
e ox/oxgauss/src

Copy all . src files toox/oxgauss/src/bacc.
e ox/oxgauss/dlib

Copy1ibBACC.d11 to this folder.

Next, load 1ibPCBACC.1lcg in your editor, and change all instances of
c:\gauss\src\ tobacc/, for example:

bacc/initPCBACC. src
initPCBACC:proc

Running the program A test program is supplied in theest folder of the zip file.
RenameBACCTEST to BACCTEST . src, and run the file.

As it stands, the test program will bomb when trying to print the error message ‘k
less than or equal to £.This happen in the first call toobust. Since the error message
would abort the program anyway, it is better to comment out this line, so that the test
program can run to completion.

A3.7 Known limitations
e Change:
"some text" -x;
to:

"some text" (-x);

otherwise the expression is evaluated as subtraetingm the string.
e m[2,2] = {1 2,3 4};
is not allowed. Change to one of:

%It seems that error messages crash the DLL. If you wish to avoid this, recompile BACC
replacingfprintf (stderr, with printf (in error.c.

A3.7 Known limitations 83

m = {1 2,3 4};
let m[2,2] = {1 2,3 4};

"string" .* ones(p,1) is notallowed.

Column vector. ~ row vector is not supported.

printfmignores the format argument.

Character arrays cannot be transposed.

Obsolete v89 data sets must be converted to ¥967/dht2dat . ox can be used
for this. Obsolete v92 data sets are not supported.

Dataloop commands are not supported.

Complex numbers are not supported.

Indexing error messages always use base zero.

Theexternal anddeclare commands cannot appear inside functions, so must
be moved to before theroc or keyword statement.

The pgraph library has not yet been implemented.

Appendix A4

OxGauss Function Summary

abs(a);

returns absolute value of a
arccos(a);

returns arccosine of a
arcsin(a);

returns arcsine of a
arctan,arctan2

see atan,atan2
atan(a);

returns arctangent of a
atan2(y,x);

returns arctangent of y ./ x
{x,s}=balance(a);

returns balanced matrix x and diagonal scale matrix s
band(a,n);

returns banded matrix with bandwidth n (diagonal + n)
bandchol(b);

returns Choleski decomposition of banded matrix
bandcholsol(b,r);

solves system where b is output from bandchol, and r is right-hand side
bandltsol(mb,ma);

as bandsolpd
bandrv(mx);

undoes band()
bandsolpd(mb,ma);

solves system where b band matrix, and r is right-hand side
{mantissa,powérbase10(x);

writes x asm * 107, —10 < m < 10
besselj(n,x);

returns Bessel functios, (x) for integer n
bessely(n,x);

returns Bessel functiok, (z) for integer n

84

85

cdfbeta(x,df1,df2);

returnsP(X < z) for X ~ Beta(a,b)
cdfbvn(h,k,r);

returnsP(X < h,Y <k)for X, Y ~ BV N(r)
cdfbvn2(h,dh,k,dk,r);

unsupported
cdfbvn2e(h,dh k,dk,r);

unsupported
cdfchic(x,nu);

returnsP(X > x) for X ~ x2%(nu)
cdfchii(p,nu);

returns x forP(X < z) = p for X ~ x?(nu)
cdfchinc(x,nu,k);

returnsP (X < z) for X ~ x3(nu) with non-centralityd = k2
cdffc(x,m,n);

returnsP(X > z) for X ~ F(m,n)
cdffnc(x,m,n,d);

returnsP(X < x) for X ~ Fy(m,n) with non-centralityl = k2
cdfgam(r,x);

returnsP(X < z) for X ~ T'(z;r, 1)
cdfmvn(x,r);

unsupported
cdfn(ma);

returnsP(X < z) for X ~ N(0,1)
cdfn2(x,d);

returnsP(X <z +d) — P(X < x)for X ~ N(0,1)
cdfnc(x);

returnsP(X > z) for X ~ N(0,1)
cdfni(p);

returns x forP(X < z) =pfor X ~ N(0,1)
cdftc(x,n);

returnsP(X > z) for X ~ t(n)
cdftci(p,n);

returns X forP(X > x) = pfor X ~ t(n)
cdftnc(x,v,k);

returnsP(X < x) for X ~ t;(n) with non-centralityk
cdftvn(x1,x2,x3,rho12,rh023,rho31);

unsupported
cdir(s);

get current working directory (s is 0, ™ or string with drive letter)
ceil(a);

returns the ceiling of a
changedir(s);

change directory, returns current directory

86 Appendix A4 OxGauss Function Summary

chdirs;

keyword version of changedir
chol(x);

returns the Choleski decomposition of x
choldn(p,x);

returns the Choleski decomposition of p'p-x'x
cholsol(b,a);

solves ax=b using the Choleski decomposition
cholup(p,x);

returns the Choleski decomposition of p’p+x'x
chrs(mx);

converts numbers into characters (32 to a space, etc.), returns a string
clear

sets variables to O, creates them if in main section
clearg

sets global variables to 0, creates them if in main section
close(fileno);

closes the file
closeall filenol,fileno2,...;

closes all files and sets specified variables to 0
cls();

does nothing
{zr,zi} = cmadd(xr,xi,yr,yi);

returns result from complex addition (not in complex mode)
{zr,zi} = cmcplx(x);

returns x,0 (not in complex mode)
{yr.yi,zr,zi} = cmcplx2(x1,x2);

returns x1,0,x2,0 (not in complex mode)
{zr,zi} = emdiv(xr,xi,yr,yi);

returns result from complex dot division (not in complex mode)
{zr,zi} = cmemult(xr,xi,yr,yi);

returns result from complex dot multiplication (not in complex mode)
cmimag(xr,xi);

returns xi (not in complex mode)
{zr,zi} = cminv(xr,xi);

returns result from complex inversion (not in complex mode)
{zr,zi} = cmmult(xr,xi,yr,yi);

returns result from complex multiplication (not in complex mode)
cmreal(xr,xi);

returns xr (not in complex mode)
{zr,zi} = cmsoln(br,bi,ar,ai);

returns result from complex solution to (ar,ai)z=(br,bi) (not in complex mode)
{zr,zi} = cmsub(xr,xi,yr,yi);

returns result from complex subtraction (not in complex mode)

87

{zr,zi} = cmtrans(xr,xi);

returns result from complex transpose (not in complex mode)
code(me,v);

returns recoded version of v, according to rows in me
color(s);

does nothing
cols(a);

returns number of columns in a
colsf(fh);

returns number of columns in matrix file th
comlog;

keyword, does nothing
compile;

keyword, does nothing
complex(xr,xi);

unsupported, creates a complex matrix (only in complex mode)
con(r,c);

enter a matrix from the keyboard (interactive mode)
cond(a);

returns condition number of a (using SVD)
conj(z);

unsupported, returns complex conjugate of z (only in complex mode)
cons();

enter a string from the keyboard (interactive mode)
conv(a,b,first,last);

returns the convolution of a and b from first to last
coreleft();

returns231
corrm(m);

returns correlation matrix when m=x’x and first column of x is 1
corrve(vce);

returns correlation matrix from variance-covariance matrix
corrx(mx);

returns correlation matrix from data matrix
cos(a);

returns cosine
cosh(a);

returns hyperbolic cosine
counts(x,v);

return counts of elements in x that fall between values in v
countwts(x,v,w);

return weighted counts of x that fall between values in v
create [complex] fh=fname with vnames,col,typ;

creates a file

88 Appendix A4 OxGauss Function Summary

create [complex] fh=fname using comfile;

creates a file
crossprd(x,y);

returns cross product of x,y (both 3 x m)
crout(x);

returns LU decomposition of x in one matrix, U has diagonal of ones.
croutp(x);

as crout, but with pivoting, pivots are appended as extra row.
csrcol();

unsupported
csrlin();

unsupported
csrtype(mx);

returns 1
cumprodc(mx);

returns in a column: cumulative product of each column
cumsumc(mx);

returns in a column: cumulative sum of each column
cvtos(mas);

returns a string representing the vector of character data
datalist dataset varl var?2 ...;

unsupported
date(d);

returnsd x 1 vector: year, month, day, 100th of seconds after midnight
datestr(vt);

returns "'mm/dd/yy”, vtis 0 for today or vector with y,m,d,...
datestring(vt);

returns "'mm/dd/yyyy”, vtis O for today or vector with y,m,d,...
datestrymd(vt);

returns "yyyymmdd”, vt is O for today or vector with y,m,d,...
dayinyr(vt);

returns day of the year, vt is 0 for today or vector with y,m,d,...
debug filename;

keyword, does nothing
delete [/flags] [symboll,symbol2,...];

unsupported
delif(x,vif);

deletes rows of x if there is a 1 in the corresponding row of vif
design(x);

returns a 0-1 matrix with a 1 in the columns specified by x
det(ma);

returns determinant of x
detl(mx);

returns determinant from last chol,crout,croutp,det,inv,invpd,solpd,y/x

{zr,zi}=dfft(xr,xi);

returns the discrete FFT of (xr,xi)
{zr,zi}=dffti(xr,xi);

returns the reverse discrete FFT of (xr,xi)
dfree(drive);

returns231
diag(a);

returns the diagonal of a as a column vector
diagrv(a,mdiag);

returns a with its diagonal replaced by mdiag
disable

ignored: is always on (invalid floating point operations return NaN or Inf)
dlibrary

lists dynamic link libraries to search for calls
dlicall

calls a function from a dynamic link libraries
dos

keyword which issues an operating system call
dotfeq(ma,mb);

returns 0-1 matrix with result of dot-fuzzy-equal
dotfge(ma,mb);

returns 0-1 matrix with result of dot-fuzzy-greater-or-equal
dotfgt(ma,mb);

returns 0-1 matrix with result of dot-fuzzy-greater
dotfle(ma,mb);

returns 0-1 matrix with result of dot-fuzzy-less-or-equal
dotflt(ma,mb);

returns 0-1 matrix with result of dot-fuzzy-less
dotfne(ma,mb);

returns 0-1 matrix with result of dot-fuzzy-not-equal
draw();

not supported
dstat(dataset,vars);

prints and returns summary statistics of a dataset
dummy(mx,v);

creates a 0-1 matrix from mx according to v
dummybr(mx,v);

creates a 0-1 matrix from mx according to v, closed on right
dummydn(mx,v, p);

as dummy, but drops column p
ed

unsupported
edit

unsupported

90 Appendix A4 OxGauss Function Summary

editm(mx);

unsupported
eig(mx);

returns the eigenvalues of a general matrix
eigcg(mr,mi);

unsupported
eigcg2(mr,mi);

unsupported
eigch(mr,mi);

unsupported
eigch2(mr,mi);

unsupported
eigh(mx);

returns the eigenvalues of a symmetric matrix
{e,v}=eighv(mx);

returns the eigenvalues e and vectors v of a symmetric matrix
{er,eit=eigrg(mx);

returns the eigenvalues of a general matrix
{er,ei,vr,vir=eigrg2(mx);

returns the eigenvalues e and vectors v of a general matrix
eigrs(mx);

same as eigh
{e,v}=eigrs2(mx);

same as eighv
{e,v}=eigv(mx);

returns the eigenvalues e and vectors v of a general matrix
enable

ignored (see disable)
end();

closes all open files and stops the current run
envget(s);

returns the value of a environment variable
eof(fileno)

returns 1 if at end of file, O otherwise
egsolve(func,start);

unsupported
erf(x);

returns erf(x), where erf is the error function
erfc(x);

returns 1 - erf(x)
error(i);

returns a missing value with embedded error code i, 0j=ij=65535
errorlog str;

prints the text s

91

etdays(vtl,vt2);

returns the difference in days between two dates
ethsec(vtl,vt2);

returns the difference in hundreds of seconds beween two dates
etstr(hsecs);

returns the text representing the hundreds of seconds hsecs
exctsmpl(infile,outfile,percent);

unsupported
exec(program,cmdline);

operating system call to run program with arguments cmdline
exp(x);

returns exponential of x
export(x,fname,namelist);

unsupported
exportf(dataset,fname,namelist);

unsupported
eye(r);

returns r by r identity matrix
fcheckerr(ifileno);

returns 1 if a read/write error occurred, 0 otherwise
fclearerr(ifileno);

clears the error status of the file
feq(al,a2);

returns 1 if fuzzy-equal to, O otherwise
fflush(ifileno);

flushes the file buffer
fft(x);

returns FFT of x
ffti(f);

returns inverse FFT of f
fitm(mx,dim);

unsupported
fftmi(mx,dim);

unsupported
fitn(mx,dim);

currently identical to fft
fge(ma,mb);

returns 1 if fuzzy-greater-equal to, O otherwise
fgets(ifileno,n);

reads upto n characters or end-of-line (whichever comes first)
fgetsa(ifileno,n);

reads upto n lines (or end-of-file), returns an array of strings
fgetsat(ifileno,n);

as fgetsa, but drops newline character

92 Appendix A4 OxGauss Function Summary

fgetst(ifileno,n);

as fgets, but drops newline character
fgt(ma,mb);

returns 1 if fuzzy-greater than, O otherwise
fileinfo(fspec);

unsupported
files(mx);

unsupported
filesa(fspec);

unsupported
fle(ma,mb);

returns 1 if fuzzy-less-equal to, 0 otherwise
floor(ma);

returns the floor of a ma (floor(x): largest integer j= x)
flt(ma,mb);

returns 1 if fuzzy-less than, 0 otherwise
fmod(ma,mb);

Returns the floating point remainder of ma / mb
fne(ma,mb);

returns 1 if fuzzy-not-equal to, O otherwise
fopen(sfilename,smode);

opens a file, smode is read ("r"), write ("w"), or append ("a")
format [/type] [/onoff] [/rowsep] [/fmt] widt,precision;

sets format for print
formatcv(mch);

sets character format for printfm
formatnv(s);

sets numeric format for printfm
fputs(ifileno,sa);

writes a string or string array, returns number of lines written
fputst(ifileno,sa);

as fputs, but adds newline after each line
fseek(fileno,offset,base);

moves the file pointer to offset+base, returns the new position
fstrerror();

returns the current error text
ftell(f);

returns the current position of the file pointer
ftocv(x, wid, prec);

returns the character-matrix representation of x
ftos(x,fmt,wid,prec);

return the value of x as a string
gamma(mx);

returns the result of the gamma function

93

gammaii(r,p);
returns quantiles from the Gamma(p,r,1) (incomplete gamma function)
gausset();
resets the defaults
getf(filename,mode);
returns the contents of the specified file in a single string
getname(dset);
returns the names in a data set
getnr(nset,ncols);
unsupported
getpath(pfname);
unsupported
gradp(f,x);
return gradient of function f at xf : n — k, return value i x n
graph(x,y);
unsupported
graphprt(str);
ignored
hardcopy(str);
skipped
hasimag(x);
unsupported
header(procname,dataset,ver);
unsupported
hess(x);
unsupported
hessp(f,vp);
return Hessian of function fat X, : n — 1, return value is1 x n
hsec();
returns the current time in 100th of seconds
imag(x);
unsupported
import(fname,range,sheet);
unsupported
importf(fname,dataset,range,sheet);
unsupported
indcv(what,where);
returns indices in where of strings matching what (case insensitive)
indexcat(x,v);
returns indices of elements in x equal to v (v scalar) or v[1]jxj=V[2]
indices(dataset,vars);
unsupported
indices2(dataset,varl,var2);
unsupported

94 Appendix A4 OxGauss Function Summary

indnv(what,where);
returns the indices of the numeric values from what in where
int(x)
see floor
intgrat2(f,xl,gl);
unsupported
intgrat3(f,xl,gl,hl);
unsupported
intquadl1(f,xl);
unsupported
intquad2(f,xl,yl);
unsupported
intquad3(f,xl,yl,zl);
unsupported
intrleav(infilel,infile2,outfile, keyvar,keytyp);
unsupported
intrsect(vl,v2,flag);
returns the intersection of v1 and v2 (numerical if flag=1, character otherwise)
intsimp(f,xl,tol);
unsupported
inv(ma);
returns inverse of ma (using LU decomposition with pivoting)
invertpd(ma);
returns the inverse of ma (ma symmetrix p.d., using Choleski decomposition)
invswp(x);
returns the generalized inverse of ma
iscplx(x);
unsupported
iscplxf(x);
unsupported
ismiss(a);
returns 1 if a has any missing values, 0 otherwise

key();
unsupported

keyw();

unsupported
lag1(x);

returns x with each column one observation lagged (so first is missing)
lagn(x,n);

returns x with each column n observations lagged (so first is missing)
lib

not supported
library [libl,lib2,...];

specifies an OxGauss library

In(ma);
returns the natural logarithm of a
Incdfbvn(x1,x2,r);
returns In(cdfbvn(...))
Incdfbvn2(h,dh,k,dk,r);
unsupported
Incdfmvn(x,r);
unsupported
Incdfn(x);
returns In(cdfn(...))
Incdfn2(x,dx);
returns In(cdfn2(...))
Incdfnc(x);
returns In(cdfnc(...))
Infact(mx);
returnsl’(z + 1) (log-factorial)
Inpdfmvn(x,s);
Inpdfn(x);
returns normal log-density
load x;
load y[]=filename;
load z=filename;
loads a file
loadd(sdataname);
loads a data set
loadf f;
loadf f=filename;
unsupported
loadk k;
loadk k=filename;
unsupported
loadm x;
loadm y[]=filename;
loadm z=filename;
loads a matrix file
loadp p;
loadp p=filename;
unsupported
loads s;
loads s=filename;
loads a string file
locate m,n;
unsupported
loess(y,x);

96 Appendix A4 OxGauss Function Summary

unsupported
log(ma);

returns the base 10 logarithm of a (use In for natural logarithm!)
lower(s);

returns s in lower case (s can be a string or character matrix
lowmat(x);

returns the lower diagonal of x, upper diagonal is setto O
lowmat1(x);

as lowmat, but diagonal is set to 1
Ipos();

unsupported
Iprint

unsupported
[pwidth

unsupported
Ishow

unsupported
Itrisol(b,L);

returns x from Lx=b, where L is lower diagonal
{ml,mu}=lu(x);

returns LU decomp. of x, rows of L are reordered to reflect the pivoting.
lusol(b,L,U);

returns x from LUx=b, where L,U are from lu() (L may be row-reordered)
makevars(x,vnames,xnames);

unsupported
maxc(X);

returns the maximum value in each column as a column vector
maxindc(x);

returns the index of the maximum value in each column as a column vector
maxvec();

returns231
mbesselei(x,n,alpha);

returnse I, (z),...,e *I_14+0(2)
mbesseleiO(x);

returnse=*Io(x)
mbesseleil(x);

returnse "I (z)
mbesseli(x,n,alpha);

returnsl, (z), I14a (), - . -, In—14a ()
mbesseli0(x);

returnsly(z)
mbesselil(x);

returnsly(z)
meanc(x);

97

returns the mean of each column of x as a column vector
median(ma);

returns the median of each column of x as a column vector
medit(x,xv,xfmt);

unsupported
mergeby(infilel,infile2,outfile,keytyp);

unsupported
mergevar(vnames);

unsupported
minc(x);

returns the minimum value in each column as a column vector
minindc(x);

returns the index of the minimum value in each column as a column vector
mMiss(x,V);

returns x with values equal to v replaced by the missing value
missex(x,e);

returns x with a missing value in positions where e is not 0
Missrv(x,v);

returns x with values that are misisng replaced by v
moment(a,b);

returns a’'a; if b=1 rows with missing values are deleted,

if b=2 missing values are set to 0
momentd(dataset,vars);

unsupported
msym str;

unsupported
nametype(vhame,vtype);

unsupported
ndpchk(x);

unsupported
ndpclex();

unsupported
ndpcntrl(x);

unsupported
new [nos[,mps]];
nextn(n0);

unsupported
nextnevn(n0);

unsupported
null(x);

returns the null space of X’
nulll(x,dataset);

unsupported
{...}=ols(dataset,depvar,indvars);

98 Appendix A4 OxGauss Function Summary

unsupported
olsqr(y,x);
returns estimated coefficients from regressing y on x
{bhat,yhat,res=olsqr2(y,x);
returns estimated coefficients, fitted values and residuals
ones(r,c);
returns a r x ¢ matrix of ones
open fh=filename [for mode];
opens afile
optn(n0);
unsupported
optnevn(n0);
unsupported
orth(x);
returns an orthonormal base for x
output [file=filename] [on or reset or off];
switches output logging on or off
outwidth n;
sets the output line length (default is 256)
packr(x);
returns x with rows containing missing values deleted
parse(str,chmdelim);
returns a character matrix with the tokens in str, delimited by chmdelim
pause(isec);
pauses fo isec seconds
pdfn(a);
returns the normal PDF at a
pi();
returnsr
pinv(x);
returns generalized inverse off x
plot x,y;
unsupported
plotsym n;
unsupported
polychar(x);
returns the characterstic polynomial of x
polyeval(x,c);
returns the polynomial evaluated at x
polyint(xa,ya,x);
returnsy = P(z), whereP is the polynomial of degree — 1 such that
P(za;) =ya;,i=1,...,n.
polymake(roots);
returns the polynomial coefficients

99

polymat(x,p);

returnsx~1 ~ ... T x°p
polymult(c1,c2);

multiplies two polynomials
polyroot(poly);

returns the roots of the polynomial
pagwin

ignored
presnn;

ignored
print [/type] [/onoff] [/[rowsep] [/fmt] [expression-list][;];

print
printdos str;

prints a string
printfm(x,mask,fmt);

prints a mixed character/numeric matrix
printfmt(x,mask);

prints a mixed character/numeric matrix
prodc(x);

returns a row vector with the products of the elements in each column
putf(f,str,start,len,mode,append);

unsupported
QProg(start,q,r,a,b,c,d,bnds);

unsupported
{a.r}=qar(x);

QR decomposition without pivoting
{a.r.p}=aqre(x);

QR decomposition with pivoting, p holds permutation indices
{a.r.pt=qqrep(x,pvt);

as qqgre (pvt is ignored)
r=qr(x);

QR decomposition without pivoting
{r.p}=are(x);

QR decomposition with pivoting, p holds permutation indices
{r.p}=arep(x,pvt);

as gre (pvt is ignored)
grsol(b,U);

returns x from Ux=B where U is upper triangular
grtsol(b,L);

returns x from Lx=B where L is lower triangular
{qty,r}=qtyr(y,x);

QR decomposition without pivoting, returning Q'Y and R
{aty.r.p}=qtyre(y.x);

QR decomposition without pivoting, returning Q'Y, R, and P

100 Appendix A4 OxGauss Function Summary

qtyrep(y.x,pvt);

as gtyre (pvtis ignored)
guantile(x,e);

returns e’'th quantiles of columns of x
guantiled(dataset,x,e);

unsupported
{ay.rt=qyr(y.x);

returnsQY and R from QR decomposition
{ay.r.pivi=ayre(y.x);

returnsQY andR from QR decomposition with pivoting
ayrep(y,x,pvt);

same as qyre
rank(x);

returns the rank of x
rankindx(x,flag);

returns the rank index of columsn elements of x
readr(f,r);

reads r rows from file f
real(x);

returns x;
recode(x,e,v);

recodes elements in x as indicated by e using v
recserar(x,y0,a);

returns the cumulated autoregressive sum of x, with starting values x0 and coeff. a
recsercp(x,z);

returns the cumulated autoregressive product of x, with starting values x0 and coeff. a
recserrc(X,z);

returns the cumulated autoregressive division of x
reshape(ma,r,c);

returns an r by ¢ matrix, filled by row from vecr(ma).
rev(ma);

returns ma with elements of each row in reverse order
rfft(x);

returns the real FFT of x
rffti(x);

returns the inverse real FFT of x
rfftip(x);

same as rffti
rfftn(x);

same as rfft
rfftnp(x);

same as rfft
rfftp(x);

same as rfft

101

rndbeta(r,c,a,b);

returns r x ¢ matrix with Beta(a,b) random numbers
rndcon c;

ignored
rndgam(r,c,alpha);

returns r x ¢ matrix with Gamma(alpha,1) random numbers
rndmod m;

ignored
rndmult a;

ignored
rndn(r,c);

returns r x ¢ matrix with N(0,1) random numbers
rndnb(r,c,n,p);

returns r x ¢ matrix with NegBin(n,p) random numbers
rndns(r,c,s);

sets seed to s, and returns r x ¢ matrix with N(0,1) random numbers
rndp(r,c,mu);

returns r x ¢ matrix with Poisson(mu) random numbers
rndseed s;

setsseedto s
rndu(r,c);

returns r x ¢ matrix with uniform random numbers
rndus(r,c,s);

sets seed to s, and returns r x ¢ matrix with uniform random numbers
rndvm(r,c,mu,kappa);

returns r x ¢ matrix with VonMises(mu,kappa) random numbers
rotater(x,c);

returns x with row elements rotated according to ¢
round(x);

returns rounded valuess of x
rows(x);

returns the number of rows of x
rowsf(f);

returns the number of rows in .fmt or .dht file f
rref(x);

returns the reduced row echelon form of x
run filename;
save [option][path=dpath]x,[Ipath=]y;

saves as .fmt or .fst file (default is extended v89 unless option is -v96)
saveall

unsupported
saved(x,dataset,vnames);

unsupported
scalerr(x);

102 Appendix A4 OxGauss Function Summary

returns the error code embedded in the missing value
scalmiss(x);
returns 1 if x is scalar and a missing value
schtoc(sch,trans);
unsupported
schur(x);
unsupported
screen [on or off or out];
ignored
scroll
ignored
seekr(th,r);
moves to row r in file fh
selif(x,e);
returns those rows of x where e hasa 1
seqa(start,inc,m);
returns a column vector with start, start+inc, start+(m-1)*inc
seqm(start,inc,m);
returns a column vector with start, start*inc, startXimc— 1)
setcnvrt(type,ans);
ignored
setdif(vl,v2,flag);
returns the sorted unique elements of v1 which are not in v2 as a column vector
(flag=0: character matrix, 1: numerical, 2: character matrix, converted to upper case)
setvars(dataset);
unsupported
setvmode(x);
obsolete
shell cmd;
same as dos
shiftr(x,c,d);
returns x with row elements rotated according to r, vacated positions are setto d
show [/flags][symbol];
unsupported
sin(ma);
returns sine of ma
sinh(ma);
returns sine hyperbolic of ma
sleep(secs);
same as pause
solpd(b,a);
returns x from ax=b where a is symmmetric positive definite
sortc(x,c);

103

returns x sorted by column c
sortcc(x,c);

returns x sorted by column c, where x is a character matrix or string array
sortd(infile,outfile keyvar,keytyp);

unsupported
sorthc(x,c);

same as sortc
sorthcc(x,c);

same as sortcc
sortind(x);

returns the index corresponding to sorted x
sortindc(x);

returns the index corresponding to sorted x, where x is a character matrix
sortmc(x,vc);

returns x sorted by the columns specified by vc
splineld(x,y,d,s,sigma,q);

unsupported
spline2d(x,y,z,sigma,g);

unsupported
sgpsolve(func,start);

unsupported
sqrt(ma);

returns the square root of ma (. if ma j 0)
stdc(x);

returns the standard deviation ox x
stocv(s);

returns s as a character vector
stof(x);

converts x to numerical values, where x is a string or character matrix
stop();

stops the current run
strindx(where,what,start);

returns the index of what in where[start:,.] or 0 if not found
strlen(s);

returns the length of s, or matrix of lenngths if s is a character matrix
strput(substr,str,pos);

returns a string str with substr insert at pos
strrindx(where,what,start);

reverse version of strindx
strsect(string,pos,len);

returns a substring of length len from string at pos (or empty string)
submat(x,r,c);

returns the r x ¢ leading sub matrix of x (r=0 all rows, c=0 all columns)
subscat(x,v,s);

104 Appendix A4 OxGauss Function Summary

replaces values in x by s according to category v
substute(x,v,s);

replaces values in x by s according to logical values in v
sumc(x);

returns sum of columns of x as a column vector
svd(x);

returns the singular values of x in a column vector
svd1(x);

assvd2, butuisrxrifrijec.
{u,w,v}=svd2(x);

returns SVD of r x ¢ matrix x, w is a diagonal matrix
svdcusv(mx);

as svd2, but does not use trapchk
svds(mx);

as svd, but does not use trapchk
svdusv(mx);

as svdl, but does not use trapchk
{...}=sysstate(vcase,y);
system;

exits
tab(col);

unsupported
tan(x);

returns tangent of x
tanh(x);

returns hyperbolic tangent of x
tempname(path,pre,ext);

returns a temporary file name
time(x);

returns the time as a 4 x 1 vector: hour, min, sec, 0
timestr(x);

prints the time as a string (x=0: current time)
tocart(x);

unsupported
toeplitz(x);

returns a toeplitz matrix constructed from x
{tok,str}=token(str);

returns the leading token and the remainder of str
topolar(xy);

unsupported
trace new[,mask];

unsupported
trap new[,mask];

sets or clears the trap value

105

trapchk(m);
returns the trap value masked by m
trim
same as trimr
trimr(x,top,bot);
returns x[top + 1 : rows(x) - bot,.]
trunc(ma);
truncates fractional part
type(x);
returns the type of x
typecv(x);
returns the type of the named global variable
typef(x);
unsupported
union(vl,v2,flag);
returns the union of vl and v2 (v1,v2 are numerical if flag=1)
unigindx(vl,flag);
returns index of the unique elements in v1 (v1 is numerical if flag=1)
unique(vl,flag);
returns the unique elements in v1 (v1 is numerical if flag=1)
upmat(x);
returns the upper diagonal of x, lower diagonal 0
upmatl(x);
returns the strict upper diagonal of x, diagonal is 1, lower diagonal O
upper(s);
returns s converted to uppercase
utrisol(b,u);
returns x from Ux=B where U is upper triangular
vals(s);
returns a column vector with the character values of the string s
varget(s);
returns the named variable from the global stack
vargetl(s);
unsupported
varput(x,n);
sets the named variable on the global stack
varputl(x,n);
unsupported
vartypef(names);
unsupported
vartypef(names);
returns the type of the named global variable
vem(m);
returns a correlation matrix from moments m=x'x, first column of x must be 1's

106 Appendix A4 OxGauss Function Summary

vex(X);

returns a correlation matrix from data matrix x
vec(X);

returns the stacked columns of x
vech(x);

returns vec of the lower diagonal of x
vecr(x);

returns the stacked rows of x as a column vector
vget(dbuf,name);

unsupported
vlist(dbuf);

unsupported
vnamecv(dbuf);

unsupported
vput(dbuf,x,name);

unsupported
vread(dbuf,xname);

unsupported
vtypecv(dbuf);

unsupported
wait();

waits for an integer to be entered
waitc();

unsupported
writer(fh,x);

writes x to fh
xpnd(ma);

undoes the vech operator
zeros(r,c);

returns an r x ¢ matrix of zeros.

Appendix A5

OxGauss Language Reference

A5.1 Lexical conventions

A5.1.1 Tokens

The first action of a compiler is to divide the source code into units it can understand,
so-called tokens. There are four kinds of tokens: identifiers, keywords, constants (also
called literals) and operators. White space (newlines, formfeeds, tabs, comments) is
ignored except when indexing or in theint statement.

A5.1.2 Comment

Anything betweery* andx*/ is considered comment; this commeanbe nested (un-

like C and C++). Anything betweere ande is also comment; thisannotbe nested.
Everything following// up to the end of the line is comment, but is ignored inside

other comment types:

Note that code can also be removed using preprocessor statemejiss 2.

A5.1.3 Space

A space (including newline, formfeed, tab, and comments) is used to separate items
when indexing a matrix, or in thgrint statement.

A5.2 ldentifiers

Identifiers are made up of letters and digits. The first character must be a letter. Under-
scores () count as a letter. Valid names a&@Ns, cons, cons_1, _a_1_b, etc. Invalid

are #CONS, 1_CONS, log(X), etc. OxGauss isot case sensitive, SOONS and cons

are the same identifiers. It is better not to use identifiers with a leading underscore, as
several compilers use these for internal names. The maximum length of an identifier is
60 characters additional characters are ignored.

!Extensions are marked with a *.
2Up to 32 characters in GAUSS

107

108 Appendix A5 OxGauss Language Reference

A5.2.1 Keywords

The following keywords are reserved:
keyword:one of

and delete endp goto matrix string
break do eq gt ne until
call else eqv if not while
clear elseif external keyword or xor
clearg endata fn le pop

continue endfor for let proc

dataloop endif ge local retp

declare endo gosub 1t return

A5.3 Constants

Arithmetic types and string type have corresponding constants.
constant:
scalar-constant
matrix-constant
vector-constant
string-constant
scalar-constant:
int-constant
double-constant

A5.3.1 Integer constants

A sequence of digits is an integer constant. A hexadecimal constant is a sequence of
digits and the lettera to F or a to £, prefixed byox or 0X.

A5.3.2 Character constant$

Character constants are interpreted as an integer constant. A character constant is an
integer constant consisting of a single character enclosed in single quotes(eamd
’0’) or an escape sequence (§8&.3.5) enclosed in single quotes.

Ab5.3.3 Double constants

A double constant consists of an integer part, a decimal point, a fraction partEan
d or D and an optionally signed integer exponent. Either the integer or the fraction part
may be missing (not both); either the decimal point or the full exponent may be missing

3This is different from GAUSS, where all variables and functions in the namespace become
reserved words.

A5.3 Constants 109

(not both). A hexadecimal double constant is writterbashhhhhhhhhhhhhhhThe
format used is an 8 byte IEEE real. The hexadecimal string is written with the most
significant byte first (the signh and exponent are on the left). If any hexadecimal digits
are missing, the string is left padded with O's.

Note that most numbers which can be expressed exactly in decimal notation, cannot
be represented exactly on the computer, which uses binary notation.

A5.3.4 Matrix constants

A matrix constant lists withid and} the elements of the matrix, row by row. Each row
is delimited by a comma, successive elements in a row are separated by a space. For
example:

{11 12 13, 21 22 23}

which is a2 x 3 matrix:
11 12 13
21 22 23

Elements in a matrix constant can only be an integer or double constant. No
expressions are allowed. To indicate complex humbers, write:

complex-constant
sign,,: real-part sign complex-part
sign,,: real-part sign complex-part
sign,,: complex-part

signone of:
+ -

without spaces.

A dot may be used in a matrix constant to indicate a missing value. This has a
double value NaN (Not a Number).

In some contextsdeclare, let), the braces surrounding the matrix constant are

optional. This is indicated asector-constantecause the result is always a colummn
vector (so a comma does not separate rows).

A5.3.5 String constants

A string constant is a text enclosed in double quotes. To extend a string across a second
line, put a backslash between adjacent string constants. This backslash is optional:
adjacent string constants are concaterfatetl null character is always appended to
indicate the end of a string. The maximum length of a string constant is 2048 characters.

Escape sequences can be used to represent special characters:

110 Appendix A5 OxGauss Language Reference

escape-sequencene of

\" double quote'() \’ single quote ()

\O null character A\ backslash\)
\aor\g alert(bel) \b backspace

\f formfeed \nor\l newline

\r carriage return \t horizontal tab

\v vertical tab \e escape (ASCII 27)
\xhh hexadecimal numbehf)

At least one and at most two hexadecimal digits must be given for the hexadecimal
escape sequence. A single quote need not be escaped.

A5.3.6 Constant expression

A constant-expressidfi is an expression which involves scalar constants and the fol-
lowing operators+ - * /.
An int-constant-expressidn a constant expression which evaluates to an integer.
Constant expressions are evaluated when the code is compiled.

A5.4 Objects

A5.4.1 Types

Variables in OxGauss are implicitly typed, and can change type during their lifetime.
The life of a variable corresponds to the level of its declaration. Its scope is the section
of the program in which it can be seen. Scope and life do not have to coincide.

There are three basic types and four derived types. The integeintyigea signed
integer. The double precision floating point type is calliedible A matrix is a two-
dimensional array of doubles which can be manipulated as a whaltsingy-type holds
a string, while ararray-type is an array of references. A function is also recognized as
atype.

arithmetic-type: int, double, matrix
string-type: string
scalar-type: int, double
vector-type: string, matrix
derived-type: string-array, character-matrix
other-type: function

At the programming level, the following types are used in external declarations:

type: one of

fn, keyword, matrix, proc, string
function-type:one of

fn, keyword, proc

*Where OxGauss allows constant-expressions, Gauss only allows constants.

A5.5 OxGauss Program 111

A character matrix is a matrix where the elements holds strings rather than numeric
data. Since the underlying storage type is a double, the strings cannot be longer than 8
characters.

A string array is a vector or matrix of strings. For this type, there is no restriction
on the length of the strings stored in the array.

A5.4.1.1 Type conversion

When a double is converted to an int, the fractional part is discarded. For example,
conversion to int of 1.3 and 1.7 will be 1 on both occasions. When an int is converted
to a double, the nearest representation will be used.

A single element of a string (a character) is of type int. An int or double can be
assigned to a string element, which first results in conversion to int, and then to a single
byte character.

A5.4.2 Lvalue

An Ivalue is an object to which an assignment can be made.

A5.5 OxGauss Program

program:
external-statement-list
external-declaration-list

A OxGauss program consists of a sequence of statements and external declarations.
These either reserve storage for an object, or serve to inform of the existence of objects
created elsewhere. All statements at the external level make up the main section of the
program.

A5.6 External declarations

external-declaration-list:
external-declaration
external-declaration-list external-declaration
external-declaration:
declare-statement
external-statement
function-statement

An Ox program consists of a sequence of external declarations. These either reserve
storage for an object, or serve to inform of the existence of objects created elsewhere.

112 Appendix A5 OxGauss Language Reference

A5.6.1 External statement

external-statement:

external type variable-list;
variable-list:

identifier

variable-list, identifier

The external variable declaration list makes externally created variables available to
the remainder of the source file. Such variables are not created througatiérenal
statement, but just pulled into the current scope. fijpeis defined ingA5.4.1.

A5.6.2 Declare statement

declare-statement:
declare identifier initialisation,; ;
declare matrix identifier initialisation,,; ;
declare string identifier initialisation,,; ;
initialisation:
dimensiop, initial-value
dimension:
[int-constant-expressionint-constant-expressioh
[int-constant-expressidn
initial-value:
assign scalar-constant
assign matrix-constant
assign vector-constant
assign string-constant
assignone of:

= 1= := ?=

Thedeclare statement creates storage space for a variable. If no type is specified,
the type is matrix. If no initialisation is specified, the variable is set to zero (or an
empty string if the type istring). Constants and constant expressions are explained
in §A5.3.

The dimension can only be specified firtrix type. If a dimension is specified
as well as a matrix constant for initialization, they must match in dimension (this is not
enforced: the constant takes precedéhcH a dimension is specified together with a
scalar initial value, all elements are set to that value. If an external variable is created
without explicit value and without dimensions, it will default to an int with value 0. The
type of assignment symbol only matters when the variable already has a vane!:
I=reassign, = results in an error, antk leaves the old value.

The variable is within the scope of the remainder of the source file.eXhernal
statement makes the variable available elsewhere.

A5.6 External declarations 113

A5.6.3 Function (procedure, fn, keyword) definitions

function-statement:
proc return-count,, identifier (variable-list,,;) ; proc-statement-listéndp ;
fn identifier (variable-list,,;) = expression
keyword identifier (argument-identifier; proc-statement-liséndp;

return-count:
(int-constant-expression
int-constant-expression

proc-statement-list:

proc-statement

proc-statement-list proc-statement
proc-statement:

statement

local-statement

retp-statement

local-statement:

local typed-list
typed-list:

typed-identifier

typed-list typed-identifier
typed-identifier:

identifier

identifier: function-type
retp-statement:

retp;

retp (expression-ligt

A function definition specifies the function header and body, and declares the func-
tion so that it can be used in the remainder of the file. A function can be declared many
times, but defined only once. An empty argument list indicates that the function takes
no arguments at all. Such a function can be called by the name only (or, which is better
coding practice, with() after the name).

proc(2) = test2(al, a2); /* definition of test2 */
{
local bi;
bl = testl(a2); /* call external function testl */
a2 = 1; /* a2 may be changed */
/x ... %/
retp(a2,bl);
endp;

}
{x1, x2} = test2(2,3);

The example shows that external functions need not be declared before they are called
(although it would be good programming practice)tést1 is not found at the link

114 Appendix A5 OxGauss Language Reference

stage, an error will be reported.

All functions may have a return value, but this return value need not be used by the
caller. If a function does not return a value, its actual return value is undefihék
call to call a function and discard the return values. A function has only one return
value when the number of returns is left unspecified.

If a function is redefined, it automatically replaces the function which existed earlier
(without printing a warning).

The local statement allocates a local variable. If the local variable has the same
name as a global variable, the local will hide the global variable. Multiple declarations
result in a warning, unless it is a type change (such as from a matrix to a function, see
thegenfunc example below).

Theretp statement returns one or more values from the functind,also exits the
function So, when the program flow reachesetp statement, control returns to the
caller, without executing the remainder of the function. If a function fa returadues,
and is in a call functioffib, then the return fronfa counts forp arguments in the call to
fb.

A £n function is a function with one return value. So the following two are equival-
ent:

fn func(arg) = expr;
proc(1) func(arg); retp(expr); endp;

A keyword function differs from gproc in two ways: there is no return value, and
only one argument which is always a string. When a keyword is called, the argument
text up to the semicolon is passed as one string to the keyword function, unless the
argument starts with g, in which case it is interpreted as a variable name.

Functions can be passed as arguments, and an array of functions can be created. As
an example of the first:

proc(0)= func(a);

print ("\nfunc:", a);
endp;
proc(0)= func3(&fnc); /* takes a function as argument */
local fnc:proc; /* tell compiler about this */
print("\nin func3:");
call fnc(100); /* and call the passed function */
endp;

call func3(&func); /* call func3 with func as argument */
And an example of an array of functions:

proc(0)= genfunc(flist,x,i);

local f£;

f = flist[i]; /* f holds ith function */

local f:proc; /* indicate that it is a function */

f(x); /*x call £ */
endp;

genfunc(&funcO ~ &funcl, 100, 1);

Ab.7 Statements 115

Ab.6.4 external-statement-list

external-statement-list:
statement-list

External statements are like normal statements, except that they are issued outside a
procedure (so in the main code). When undeclared variables are assigned to, these are
automatically created. So no explicit declaration is required at the external level.

A5.7 Statements

statement-list:
statement
statement-list statement

statement:
labelled-statement
assignment-statement
expressiopy: ;
selection-statement
iteration-statement
jump-statement
pop-statement
call-statement
dataloop-statement
delete-statement
command-statement

assignment-statement
Ivalue= expression
{ identifier-list} = expression
let identifier initialisation ;
clear identifier-list;
clearg identifier-list;

labelled-statement:
label: statement

Labels are the targets gbto statements (sef\5.7.5); labels are local to a function
and have separate name spaces (which means that variables and labels may have the
same name).

A5.7.1 Assignment statements

An assignment statement assigns the result of an expression to a variable (or an element
in a variable). If a function has multiple returns, the result can be assigned to multiple

116 Appendix A5 OxGauss Language Reference

destinations, by listing the destinations within curly braces, separated by a comma (see
the example ir§A5.6.3).

If an assignment is made at the external level (outside any function), then the vari-
able is automatically created if it does not exist yet. Inside a function, a left-hand
variable must exist, either externally, or after creation withltbeal statement.

Thelet statement is similar tdeclare, see§A5.6.2, except that there is no type
component, and only for the assignment.

The clear statement is followed by a comma-separated list of identifiers. This
is the same as issuinglat identifiertt = 0; statement for each variable (so inside
a function, the variable must be declared witbcal first). Theclearg command
only works on global variables, so, even if a local with the same name exists inside a
function, the global is set to 0, and the local left untouched.

If an expression is executed without assignment, the result is printed.

Ab5.7.2 Selection statements

selection-statement:
if expression statement-list; endif ;
if expression statement-list,; elseif-statemepj; else-statemepy; endif ;

elseif-statement:

elseif expression statement-lisf,
else-statement:

else ; statement-list,

The conditional expression in ai¥ statement is evaluated, and if it is nonzero
(TRUE (for a matrix: no element is zeyo, the statement is executed. If the expression
is zero FALSE) the if part is not executed. The conditional expression may not be a
declaration statement.

Ab.7.3 Iteration statements

iteration-statement:
do while expression statement-listndo;
do until expression statement-listndo;
for identifier C init-expr, test-expt increment-expr; statement-lisendfor;

Thedo while statement excutes the statement-list as long as the test expression is
nonzero (for a matrix: at least one element is nonzero). The test is performed before
the statement-list is executed. Note thatio has only one d.

Thedo until statement excutes the statement-list as long as the test expression is
nonzero (for a matrix: at least one element is nonzero). The test is performed before
the statement-list is executed. &® until exprcorresponds tdo while not expr.

Ab.7 Statements 117

Thefor expression corresponds to:
identifier= init-expr;
do while identifier<= test-expt
statement-list
identifier= identifier+ increment-expy
endo;

The main feature is thatlentifieris local to the loop, so cannot be accessed after the
loop is finished. And, if another variable with the same name already exists, that vari-
able is hidden during the loop.

A5.7.4 Call statements

Usecall to call a function and discard the return values, $&8.6.3.

A5.7.5 Jump and pop statements

jump-statement:
break ;
continue ;
goto label;
goto label(parameter-lisp ;
gosub label;
gosub label(parameter-lisp ;
return label;
return label(parameter-lisp) ;

pop-statement:
pop identifier;

A continue Statement may only appear within an iteration statement and causes
control to pass to the loop-continuation portion of the smallest enclosing iteration state-
ment.

A break statement may only appear within an iteration statement and terminates
the smallest enclosing iteration statement.

The use ogoto should be kept to a minimum, but could be useful to jump out of a
nested loop, jump to the end of a routine or when converting Fortran code. It is always
possible to rewrite the code such thatgwtos are required. The target of a goto is a
label.

A gosub is similar to agoto, with the exception that a subsequeaturn jumps
to the pointimmediately after thgosub statement.

Thepop commands is used to handle the argumentsogiib, goto, andreturn.

If a goto or gosub has arguments, then the first statement(s) after the target label must
be as manyop statements as there are arguments (note that the arguments are popped
in reverse order). Similarly, if @eturn has arguments, there must be as mpays

118 Appendix A5 OxGauss Language Reference

immediately after thgosub statement. This wayosub is similar to a function call
where the local variables are shared. Usageoefib is not recommended.

Ab.7.6 Command statements
A5.7.6.1print and format command

print-command:

print options,,; expression-list, ; opt;
format-command:

format options,,; width , precision;
options:one or more of:

/type /onoff /rowsep /fmt

Theprint andformat commands share the same set of options, see Table A5.1.
Options used witlprint are local to that command, tHermat options are in force
until changed with the nextormat command, or locally within @rint. The ex-
pression list in print is separated by a space (except for expressions in parenthese or
square brackets). Use two semicolons aftetnt to suppress the newline character.
The default width is 16, and default precision 8. Note thatmat 16,8 is the same as
format /rd 16,8.

An expression without assignment is iamplicit print statement. If it is preceded
by a dollar symbol, the result is printed as a character matrix. A double semicolon after
an implicit print suppresses the newline character.

Ab5.7.6.2output command

output-command:

output file-speg,; action,,: ;
file-spec:

file string-constant

file = ~string-variable
action: one of

on of reset

A5.8 Expressions

Table A5.2 gives a summary if the operators available in OxGauss, together with their
precedence (in order of decreasing precedence) and associativity. The precedence is in
decreasing order. Operators on the same line have the same precedence, in which case
the associativity gives the order of the operators.

Subsections below give a more comprehensive discussion. Several operators require
an lvalue, which is a region of memory to which an assignment can be made. Many
operators require operands of arithmetic type, that is int, double or matrix.

A5.8 Expressions 119

Table A5.1 Options forprint andformat commands.

/type

/mat options applies to matrix type

/str options applies to string type

/sa options applies to string-array type
/onoff

/on string only: switch formatting on

/off string only: switch formatting off (default)

/rowsepindicates what is printed before or after each matrix row
condition beforerow after row

/mO0
/mblor/mi r>1 \n
/mb20or/m2 r >1 \n\n
/mb30r/m3 r>1 Row #
/mal r>1 \n
/ma2 r>1 \n\n
/bl \n
/b2 \n\n
/b3 Row #
/al \n
/a2 \n\n
/fmtformat for matrix elements

/rdC right adjusted, fixed format{.p£)
/reC right adjusted, scientific forma¥{.pe)
/roC right adjusted, general format with trailing zeros (def&#f, pg)
/rzC right adjusted, general forméif(pg)
/14C left adjusted, fixed format/- f.pf)
/1eC left adjusted, scientific forma¥,€ f.pe)
/10C left adjusted, general format with trailing zerdgt¢ f.pg)
/1zC left adjusted, general formdt<{ f.pg)

C optional character after each matrix element
s space (default), assumed wh&mmitted
t tab
c comma
n nothing

The most common operators atet-operatorgoperating element-by-element) and
relational operators (element by element, but returning a single boolean value). The
resulting value is given Tables A5.3 and A5.4 respectively. In addition, there are special
matrix operations, such as matrix multiplication and division; the result from these
operators is explained below. A scalar consists of: int, double>ofl matrix.

120 Appendix A5 OxGauss Language Reference

Table A5.2 OxGauss operator precedence.

Category operators associativity
primary ident ident) constant()

postfix n- .2 left to right
power ST left to right
unary + - right to left
multiplicative Kok ko xT /) left to right
modulo yA

additive + - left to right

horizontal concatenation ~
vertical concatenation |

dot relational < L8> L8<= 8= L= L $/=
K> k= o >= == /= left to right
dot not .not
dotand .and
dotor .or
dot xor .Xor
dot eqv .eqv
relational $< $> $<= $>= $>= §/=
<> <= >= == /= left to right
not not
and and
or or
xor xor
eqv eqv
assignmerit =

A5.8.1 Primary expressions

An expression in parenthesis is a primary expression. Its main use is to change the
order of evaluation, or clarify the expression. Other forms of primary expressions are:
an identifier, or an identifier prefixed by the address opetaftive address can only be
taken of functions, se$A5.6.3).

All types of constants discussed§A5.3 form a primary expression. This includes
a matrix constant inside curly braces.

A function call is a function name followed in parenthesis by a possibly empty,
comma-separated list of assignment expressions. All argument passing is by value, but
when an array is passed, its contents may be changed by the function (unless they are
const). The order of evaluation of the arguments is unspecified; all arguments are
evaluated before the function is entered. Recursive function calls are allowed. Also see
8A5.6.3.

A5.8 Expressions

121

Table A5.3 Result from dot operators.

lefta operator right result computes
int op int int aopb
int/double op double double aopb
double op int/double double aopb
scalar op matrixm x n matrixm xn a 0pb;;
matrixm x n op scalar matrixn x n a;; oOpb
matrixm x n op matrixm x n - matrixm xn a;; Opby;
matrixm x n op matrixm x 1 matrixm X n a;; 0P b
matrixm x n op matrix1 x n matrixm xn a;; 0pbo;
matrixm x 1 op matrixm x n. matrixm xn a;o Opby;
matrix1 xn op matrixm x n matrixm xn agj Opb;;
matrixm x 1 op matrix1 x n~ matrixm X n az 0pbog;
matrix1 xn op matrixm x 1 matrixm X n ag;j Opbio
Table A5.4 Result from relational operators.
left a operator right result computes
int op int int aopb
int/double op double int aopb
double op int/double int aopb
scalar op matrixm x nint a op b
matrixm x n op scalar int a;; Opb
matrixm x n op matrixm x n int a;; op b
matrixm x n op matrixm x 1 int a;; opbio
matrixm x n op matrix1 x n int ai; 0p bo;
matrixm x 1 op matrixm x nint aio OP b
matrix1 xn op matrixm x n int ag; OP b
string op string int aopb

Ab5.8.2 Postfix expressions
A5.8.2.1 Indexing vector and array types

Vector types (that is, string or matrix) are indexed by postfixing square brackets. A
matrix can have one or two indices, a string only one. In the case of two indices, they
are separated by a comma. If a matrix has more than one row or more than one column,
two indices must be used.

Note that indexing always starts at orfo a 2x 3 matrix has elements:

122 Appendix A5 OxGauss Language Reference

Table A5.5 Result from operators involving an empty matrix as argument.

operator either argumentempty both arguments empty

== FALSE TRUE
1= TRUE FALSE
>= FALSE TRUE
> FALSE FALSE
<= FALSE TRUE
< FALSE FALSE
other <> <>

[1,1] [1,2] [1,3]
[2,1] [2,2] [2,3]

Four ways of indexing are distinguished:

indexing type example
all elements m[.,.]
scalar m[1,1]
expression z = {1 2}; m[1,2]
element-list m[1,1:2]

e Adot selects all elements (all rows for the first index, all columns for the second).

¢ In the scalar indexing case (allowed for all non-scalar types), the expression in-
side square brackets must have scalar type, whereby double is converted to integer
by discarding the fractional part.

If the index is scalar 0, all rows (first index) or columns (second index) are used;
all elements if one index is used on a vector.

e An expression can be used for the index. If the expression evaluates to a a scalar,
it is identical to scalar indexing. If it evaluates to a matrix, all elements will be
used for indexing.

A matrix in the first index selects rows, a matrix in the second index selects
columns. The resulting matrix is the intersection of those rows and columns.

e An index can be written as spaceseparated list of elements. Such elements
must either be scalars, or a range. A range has the $tartrindex: end-index
A space inside a parenthesized expression is not a separator.

A5.8.2.2 Transpose

The postfix operatorsand .’ take the transpose of a matrix. It has no effect on other
arithmetic types of operands. There is only a difference if the operand is a complex
matrix.

The following translations are made when parsing OxGauss code:

A5.8 Expressions 123

> identifier into ’ *identifier

’(into > * (
.2 identifier into .’ x*identifier
o (into .2 % (

A single quote is also used in a character constant; the context avoids ambiguity.

Ab.8.2.3 Factorial

The postfix operatot takes the factorial of the operand (if it is a matrix: of each
element). Elements are rounded to the nearest integer before the factorial is applied.

A5.8.3 Power expressions

The operands of the power operator must have arithmetic type, and the result is given
in the table. Note that~ and~ are always the same. A scalar consists of: int, double
or1 x 1 matrix.

left a operator righd result computes
int R intor double int ab
int/double ~ .~ double double ab

double - scalar double ab

scalar ~LT matrixm x n matrixm x n ab
matrixm xn =~ .~ scalar matrixn x n al;
matrixm xn =~ .7 matrixm x n matrixm x n a’¥

]

Whena andb are integers, thea ~ b is an integer ifb > 0 and if the result can
be represented as a 32 bit signed integerb ¥ 0 anda # 0 or the integer result
would lead to overflow, the return type is double, giving the outcome of the floating
point power operation.

A5.8.4 Unary expressions

The operand of the unary minus operator must have arithmetic type, and the result is
the negative of the operand. For a matrix each element is set to its negative. Unary plus
is ignored.

A5.8.5 Multiplicative expressions

The operators ., *, .x, x , /, and ./ group left-to-right and require operands of
arithmetic type. A scalar consists of: int, doublelox 1 matrix. These operators
conform to Table A5.3, except for:

124 Appendix A5 OxGauss Language Reference

left a operator right result computes
matrixm x n * matrixn x p matrixm x p a;. b
matrixm xn .*. matrixp x q matrixmp x nqg a;;b

scalar * matrixn x p matrixn x p ab;;
matrixm x n * scalar matrixn x n ai;b
matrixm xn *~ matrixm x p matrixm x np ai1.b...am.b
matrixm xn / matrixm x p > m matrixp x n solvebr = a
scalar / matrixm x n matrixm x n a/bi;
matrixm xn / scalar matrixn x n aij/b
scalar * Lk scalar double axb

scalar / ./ scalar double a/b

This implies thatx .*. *~ are the same asx when one or both arguments are scalar,
and similarly for/ and verb/ when the right-hand operand is not a matrix.

Kronecker productis denoted by . . If neither operand is a matrix, this is identical
to normal multiplication. Direct (horizontal) multiplication is denoted ®y. The
operands must have the same number of rows.

The binary* operator denotes multiplication. If both operands are a matrix and
neither is scalar, this is matrix multiplication and the number of columns of the first
operand has to be identical to the number of rows of the second operand.

The . * operator defines element by element multiplication. It is only different from
* if both operands are a matrix (these must have identical dimensions, however, if one
or both of the arguments islax 1 matrix, * is equal to. *).

The binary/ operator denotes division. If either operand is a scalar, this is identical
to the element-by-element division performed by theoperator. If both operands are
matrices, then the result af/b is z, wherex solves the linear systebx: = a; a must
have the same number of rows @s (Note the potential for confusion: more logical
would be to solverb = a by a/b.) If b has the same number of columnsashe
system is solved by a LU decomposition with pivotingpihas more columns, it is
equivalent to a least squares probléstbz = b’a which is solved by the Choleski
decomposition ob’b (rather than the QR decompositioni)f

The ./ operator defines element by element division. If either argument is not a
matrix, this is identical to normal division. It is only different frofrif both operands
are a non-scalar matrix, then both matrices must have identical dimensions.

Note that the result of dividing two integers is a double (3 / 2 gives 1.5). Multiplic-
ation of two integers also returns a double.

Notice the difference between./ m2 and2 ./ m2. In the first case, the dot is
interpreted as part of the real numtzer, whereas in the second case it is part of the
./ dot-division operator. The same applies for dot-multiplication, but note2tham2
and2.0.*m2 give the same result.

A5.8 Expressions 125

A5.8.6 Additive expressions

The additive operators and - are dot-operators, conforming to Table A5.3. They
respectively return the sum and the difference of the operands, which must both have
arithmetic type. Matrices must be conformant in both dimensions, and the operator is
applied element by element. For example:

decl ml = <1,2; 2,1>, m2 = <2,3; 3,2>;

r
r

2 - m2; // <0,-1; -1,0>
ml - m2; // <-1,-1; -1,-1>

A5.8.7 Modulo expressions

The module operator$ is a dot-operators, conforming to Table A5.3. It returns the
integer remainder remainder when the first operand is divided by the second. Matrices
must be conformant in both dimensions, and the operator is applied element by element.
Non-integer values are rounded to the nearest integer before applying the operator.

A5.8.8 Concatenation expressions

left operator right result

int/double - int/double matrixl x 2

int/double - matrixm x n matrixm x (14 n)
matrixm xn ~ int/double matrixm x (n + 1)
matrixm x n matrixp X ¢ matrix maxm, p) x (n + q)
int/double | int/double matrix2 x 1

int/double | matrixm x n = matrix (1 +m) x n
matrixm x n | int/double matrixm + 1) x n
matrixm x n | matrixp x ¢ matrix (m + p)xmax(n, q)
int - string string

string - int string

string T string string

array - array array

array - any basic type array

Horizontal concatenation is denoted bwhile | is denoted by vertical concatena-
tion.

If both operands have arithmetic type, the concatenation operators are used to create
a larger matrix out of the operands. If both operands are scalar the result is a row vector
(for ~) or a column vector (fott). If one operand is scalar, and the other a matrix, an
extra column {) or row (|) is pre/appended. If both operands are a matrix, the matrices
are joined. Note that the dimensions need not match: missing elements are set to zero
(however, a warning is printed of hon-matching matrices are concatenated). Horizontal
concatenation has higher precedence than vertical concatenation.

126 Appendix A5 OxGauss Language Reference

Two strings or an integer and a string can be concatenated, resulting in a longer
string. Both horizontal and vertical concatenation yield the same result.
The result is most easily demonstrated by examples:

print(1 ~ 2 ~ 3 | 4 5 " 6); // <1,2,3; 4,5,6>
print("tinker" ~ ’&’ ~ "tailor"); // "tinker&tailor"
print(<1,0; 0,1> ~ 2); // <1,0,2; 0,1,2>
print(2 | <1,0; 0,1>); // <2,2; 1,0; 0,1>
print(<2> ~ <1,0; 0,1>); // <2,1,0; 0,0,1>

When the operands are an address of a function, the result is an array of functions,
see§Ab.6.3.

A5.8.9 Dot-relational expressions

The dot relational operators are, . <=, .>, .>=, .==, . /=, standing for ‘dot less’, ‘dot
less or equal’, ‘dot greater’, ‘dot greater or equal’, ‘is dot equal to’, ‘is dot not equal to’.

They conform to Table A5.3, except when both arguments are a string, in which
case the result is as for the non-dotted versions.

If both arguments are scalar, the result type inherits the higher type,>s01.5
yields a double with value. 0. If both operands are a matrix the return value is a matrix
with a 1 in each position where the relation is true and zero where it is false. If one of
the operands is of scalar-type, and the other of matrix-type, each element in the matrix
is compared to the scalar returning a matrix with 1 at each position where the relation
holds.

String-type operands can be compared in a similar way. If both operands are a
string, the results is int with value 1 or 0, depending on the case sensitive string com-
parison.

In if statements, it is possible to use matrix values. Remember that a matrix is true if
all elements are true (i.e. no elementis zero).

A5.8.9.1 Logical dot-NOT expressions

The operand of the logicahot operator must have arithmetic type, and the result is 1
if the operand is equal to 0 and O otherwise. For a matrix, logical negation is applied to
each element.

A5.8.10 Logical dot-AND expressions

The dot-or operator is written as\&\& or .and. It returns 1 if both of its operands
compare unequal to 0, 0 otherwise. Both operands must have arithmetic type. Handling
of matrix-type is as for dot-relational operators: if one or both operands is a matrix,
the result is a matrix of zeros and ones. Unlike the non-dotted version, both operands
will always be executed. For example, in the expressianc1 () .&& func2() the
second function is called, regardless of the return valudmaé1 ().

A5.8 Expressions 127

A5.8.11 Logical dot-OR expressions

The dot-or operator is written ad | or .or. It returns 1 if either of its operands com-
pares unequal to 0, O otherwise. Both operands must have arithmetic type. Handling
of matrix-type is as for dot-relational operators: if one or both operands is a matrix,
the result is a matrix of zeros and ones. Unlike the non-dotted version, both operands
will always be executed. For example, in the expressianc1 () .|| func2() the
second function is called, regardless of the return valumaé1 ().

A5.8.12 Logical dot-XOR expressions

The dot-or operator is written axor. It returns 1 if one and only one of the oper-
ands compares unequal to 0, 0 otherwise. Both operands must have arithmetic type.
Handling of matrix-type is as for dot-relational operators: if one or both operands is a
matrix, the expression is evaluated for each element, and the result is a matrix of zeros
and ones.

A5.8.13 Logical dot-EQV expressions

The dot-eqv operator is written asqv. It returns 1 if both operands are unequalto 0 or

if both are equal to 0, 0 otherwise. Both operands must have arithmetic type. Handling
of matrix-type is as for dot-relational operators: if one or both operands is a matrix, the
expression is evaluated for each element, and the result is a matrix of zeros and ones.

A5.8.14 Relational expressions

The relational operators are <=, >, >=, ==, /=, standing for ‘less’, ‘less or equal’,
‘greater’, ‘greater or equal’, ‘is equal to’, ‘is not equal to’. They yield 0 if the specified
relation is false, and 1 if it is true.

The type of the result is always an integer, see Table A5.4. If both operands are
a matrix, the return value is true if the relation holds for each element. If one of the
operands is of scalar-type, and the other of matrix-type, each element in the matrix is
compared to the scalar, and the result is true if each comparison is true.

String comparison is case sensitive.

A5.8.15 Logical-NOT expressions
The logical negation operatabt precedes the operand which must be scalar and have
arithmetic type. The resultis 1 if the operand is equal to 0 and 0 otherwise.

A5.8.16 Logical-AND expressions

Logical and && or and returns the integer 1 if both of its operands compare unequal to
0, and the integer 0 otherwise. Both operands must be scalar and have arithmetic type.

128 Appendix A5 OxGauss Language Reference

First the left operand is evaluated, if it is false (for a matrix: there is at least one
zero element), the result is false, and the right operand will not be evaluated. So in
the expressiofiunc1 () && func2() the second function withotbe called if the first
function returned falsé.

A5.8.17 Logical-OR expressions

Logical or (*]"| or or returns the integer 1 if either of its operands compares unequal

to 0, integer value 0 otherwise. Both operands must be scalar and have arithmetic type.
First the left operand is evaluated, if it is true, the result is true, and the right operand

will not be evaluated. So inthe expressiimc1 () .|| func2() the second function

will notbe called if the first function returned trdie.

A5.8.18 Logical-XOR expressions

Logicalxor returns the integer 1 if one and only one of the operands compares unequal
to O, integer value 0 otherwise. Both operands must have arithmetic type.

A5.8.19 Logical-EQV expressions

Logical eqv returns the integer 1 if both operands are unequal to 0 or if both are equal
to 0, integer value 0 otherwise. Both operands must be scalar and have arithmetic type.

A5.8.20 Assignment expressioris

The assignment operator is thagymbols; it is the operator with the lowest precedence.
An Ivalue is required as the left operand. The type of an assignment is that of its left
operand.

A5.8.21 Constant expressions

An expression that evaluates to a constant is required in initializers and certain prepro-
cessor expressions. A constant expression can have the operators -, but only if
the operands have scalar type.

A5.9 Preprocessing

Preprocessing in OxGauss is used for inclusion of files, conditional compilation of
code, and definition of constants. The following preprocessor commands are ignored:
#lineson, #linesoff, #srcfile, #srcline.”

A5.9 Preprocessing 129

A5.9.1 File inclusion

A line of the form
#include "filename';

will insert the contents of the specified file at that position. Escape sequences in strings
names areotinterpreted. The string constant does not have to be enclosed in double
quotes (the string ends at the first space or semicolon, so use double quotes if the file-
name contains a space). The ending semicolon is optional. Both forward and backward
slashes may be used in filenanies.

The file is searched for as follows:

(1) in the directory containing the source file (if just a filename, or a filename with
a relative path is specified), or in the specified directory (if the flename has an
absolute path);

(2) the directories specified on the compiler command line (if any);

(3) the directories specified in tliX3PATH environment string (or the default under
Windows).

(4) in the current directory.

A5.9.2 Conditional compilation

The first step in conditional compilation is to define (or undefine) identifiers:
#define identifier
#definecs identifier
#undef identifier
Identifiers so defined only exist during the scanning process of the input file, and
can subsequently be useddyfdef and#ifndef preprocessor statements:
#ifdef identifier
#ifndef identifier
#else
#endif
Use#define to make a case insensitive definition aftkfinecs for a case sens-
itive definition. Subsequentlifundef, #ifdef, #ifndef will first search for a case
sensitive match, if that is not found, it will try to find a case insensitive definition.
Also defined are:

#ifDOS TRUE when running under Windows
#if0S2WIN TRUE when running under Windows
#ifUNIX TRUE when running under UNIX
#ifLIGHT TRUE when running light version
#ifCPLX TRUE if complex matrices supported
#ifREAL TRUE if complex matrices not supported

#ifDLLCALL TRUE if DLL calls supported

130 Appendix A5 OxGauss Language Reference

A5.9.3 Constant definition

If any text follows the defined constant, all matching occurrences of that text will be
replaced by the specified text:

#define identifier replacementext

#definecs identifier replacementext

For example, after

#define MAXVAL 100
all instances oMAXVAL (including Maxval, maxval, etc.) will be replaced by 100.
Another example is

#definecs MINVAL 100+12
whereMINVAL is replaced by the expressiano+12. Note that macro arguments are
not supported, nor is reference to another defined replacement.

Appendix A6

Comparing Gauss and Ox syntax

A6.1 Introduction

This chapter compares Gauss syntax with Ox. In the two column format, Gauss is
discussed on the left, and Ox in the right-hand column. The aim is to aid Gauss users in
understanding Ox. Elements of Ox syntax which are not needed for that purpose (such
as classes) are not discussed here.

A6.2 Comparison

A6.2.1 Comment

Thee ... @styleof commentdoesnot Ox commentstyle ig* ... */ (asin
existin Ox. Gauss) or// which indicates a comment
up to the end of the line.

A6.2.2 Program entry

A Gauss program starts execution at theAn Ox program starts execution at the
first executable statement (which is not afunctionmain.
procedure/function/keyword etc.).

A6.2.3 Case and symbol names

Gauss is not case sensitive, except insideOx is case sensitive. Symbol hames may
strings. Symbol names may be up to 32be up to 60 and strings up to 2048 char-
characters. acters.

131

132 Appendix A6 Comparing Gauss and Ox syntax

A6.2.4 Types

Gauss primarily has a matrix type.

A6.2.5 Matrix indexing

Indexing starts at 1, so[1,1] is the first

Ox is implicitly typed, and has the fol-
lowing types: integer, double, matrix,
string, array, file, function, class. Type is
determined at run time (and can change at
run time). E.g.a=1; creates an integer,
a=1.0; adouble and=<1>; a matrix.

Indexing starts at 0, sa[0] [0] is the

element in a matrix. Vectors only need first element in a matrix. Ox can be made
one index. A matrix can be indexed by a to start indexing at 1; this will lead to a

single index, a list of numbers, or an ex- somewhat slower program. Vectors only
pression evaluating to a vector or matrix need one index. A matrix can be indexed
(in which case no spaces are allowed). Aby a single index, a list of numbers, or

dot indicates all elements, for example:

wl1,1]
w[2:5,3:6]
w[l 3:4,.]
wla+b,c]

A6.2.6 Arrays

an expression evaluating to a vector or
matrix (including matrix constants) or a
range. The upper or lower index in a
range may be omitted. A empty index in-
dicates all elements, for example:

w[0] [0]

wl[1:4][2:5]

w[<0,2:3>]1[]

wla + bl [c]

wl:4]1[2:]

Gauss implements arrays using the varpufThe array is a type in Ox, e.g{"one",

and varget function.

"two", <1,2>} is an array constant,
where the first two elements are a string,
and the last a matrix. To print these:
print(al0], al1l, a[2]). Anewar-
ray is created with the new operator.

A6.2 Comparison 133

A6.2.7 Declaration and constants

In Gauss, a variable can be assigned &x has explicit declaration of variables.
value with alet or implicit let state- A value can be assigned to a variable at
ment. If the variable doesn’t exist yet, the same time as itis declared. If the vari-
it is declared, otherwise it is redeclared. able has external scope (i.e. is assigned
A variable can be declared explicitly with outside any function), you can use con-
thedeclare statement. Assignmentin a stants only, (matrix or other constants).
let statement may consist of a number, aSuch constants can also be used in ex-
sequence of numbers (or strings) separ{pressions.

ated by spaces, or numbers in closed ing,; .

=<1,1,1 %
curly brackets. The latter specifies a mat-gec1 yo = <1,2>;
rix, with a comma separating rows, and decl y1 = <1,1; 2,2>;
= <1,1; 2,2>;

a space between elements in a row (thesgecl y2

are not proper matrix constants, becaused:zi z% Eg% =L
they cannot be used in expressions). Agccy y = zeros(2, 2);

variable outside a function is also created /* only inside function */

if a value is assigned to it (and it doesn't |f all statements would be used together,
exist yet). the compiler would complain about the
letw={11173; last three declarations: was already de-
let yO = 1 2; clared earlier (no redeclaration is pos-
let y1[2,2] =112 2; sible, but re-assignment is, of course).
}1,Zt[2w2[]2 ;] {i 1: 2 2}; /*(1)*/ The last declaration involves code, and
let wi2.21; can only be made inside a function.

w = zeros(2,2);

The line labelled(1) is an implicit let
which creates & x 2 matrix. A state-
ment like y2[2,2] = 1; on the other
hand puts the value one in the 2,2 pos-
ition of y, which therefore must already
exist.

A6.2.8 Expressions

Assignment statements are quite similar,Ox allows multiple assigments, e.g. =
eg. y=a .xb+ 3 -d; worksin j = 0;.In addition there are conditional
both Gauss and Ox, whether the variablesand dot-conditional expressions.

are matrices or scalars.

134 Appendix A6 Comparing Gauss and Ox syntax

A6.2.9 Operators

The following have a different symbol:
Gauss Ox

kR *k
/= 1=
not !

and &&
or Il

The text form of the relational operators
are not available in Ox, so e.g. usein-
stead of.LT.

There are no special string versions of op-
erators in Ox.

The -~ operator is matrix power, not ele-
ment by element power.

The following Gauss operators are not And finally, x=A/b (with A andb con-

supported in Ox:% (Ox has theidiv
function)! *~ ..

For z! use exp(loggamma(x+1)) or
gammafact (x+1) in OX.

A6.2.10 Loop statements

Gauss has théo while anddo until
loop:

i=1;

do while (i <= 10);
/* something */
i=1i+1;

endo;

i = 10;

do until (i < 1);
/* something */
i=1i-1;

endo;

formable) does not solve a linear system,
but is executed as=A* (1/b). This fails,
because intendedis-(1/A) *b. Thel/A
part in Ox computes the generalized in-
verse if the normal inverse does not work.

Ox has the for, while and do while loop
statements (note the difference in the use
of the semi-colon).

for (i = 0; i < 10; ++i)

{
/* something */
}
i = 10;
while (i >= 1)
{

/* something */
__i;

Recently a for loop statement has been?

added to Gauss.

i=1;

do

{ /* something */
++i;

} while (i <= 10);

A6.2 Comparison 135

A6.2.11 Conditional statements

if i == 1; if (4 == 1)
/* statements */ { /* statements */
elseif i = 2; }
/* statements */ else if (i = 2)
else; { /% statements */
/* statements */ }
endif; else

Again notice the difference in usage of { /* statements */
parenthesis and semi-colons. ¥

A6.2.12 Printing

In Gauss, grint statement consists of Ox has aprint andprintln function,

a list of items to print. A space separ- which gives the expressions to print, sep-
ates the items, unless they are in parenarated by a comma. Strings which con-
thesis. An expression without an equal tain a format are not printed but apply to
sign is also treated as a print statement. the next expression.

A6.2.13 Functions

Gauss has proceduresrpc), keywords Ox only has functions which may return
and single-line functionsf@). Proced- zero, one or more values. Values can
ures may return many values; no valuesbe also returned in arguments. Variables
can be returned in arguments. Local vari- are declared usingecl. Variables have
ables are declared with thecal state- a lifetime restricted to the brace level at

ment. which they are declared.
proc(2) = foo(x, y); foo(const x, const y,
local a,b; const retb)
/* code *x/ { decl a,b;
retp (a,b); /* code x/
endp; retb[0] = b;
return a;
{c, d} = foo(1, 2); }

c = foo(l, 2, &d);
Multiple returns are implemented as:

bar (const x)

{ decl a,b;
/* code */
return {a, b};

}

[c, d[0] 1 = bar(1);

136 Appendix A6 Comparing Gauss and Ox syntax

A6.2.14 String manipulation

Gauss allows storing of strings in a mat- A string is an inbuilt data type in Ox and

rix, and provides special operators to arrays of strings can be created. It is pos-

manipulate matrices which consists of sible to store a string which is 8 charac-

strings. ters or shorter in a matrix or double as
e.g. d = double("aap"), and extract
the string astring(d)

A6.2.15 Input and Output

Gauss.fmt files are different between Ox can read and write fmt files, and

the MS-DOS/Windows versions (little read .dht/.dat files. These are al-

endian) and the Unix versions (big en- ways written/read in little-endian mode

dian). (the Windows/MS-DOS way of storing
doubles on disk; Unix systems use big-
endian mode). So afmt file can be writ-
ten on a PC, transferred (binary mode!)
to a Sun, and read there. Ox can also read
Excel files, see undérnadmat.

A6.3 G20x

G20xis a program that translates Gauss code into Ox. It is fairly rudimentary, and can
certainly not be relied upon to translate all Gauss programs correctly. But it is a useful
starting point. The command line syntax is.

g2o0x Gaussfilename[.prg] Oxfilenamel[.ox]
Assuming that a program test.prg needs be translated to test.ox, type:

g2ox test test

This will produce three files:
test.ox —the produced source code;
test.h — the corresponding header file;
testlog - the translation log.

G20xuses the input filg2ox . cvt to find out which functions are supported, which
functions need renaming and which are not supported. When runaing ox, the file
g2ox.0x is automatically included. This file provides the translation layer for many
functions (note that a lot of functions do not yet have a translation), and sets array
indexing to start at one. Array indexing from one, and the fact that many functions are
wrapped in a thin layer means that there is a speed penalty.

G20xdoes not support the following constructs: dataloop, gosub, keyword.

Appendix A7

Random Number Generators
A7.1 Modified Park & Miller generator

This random number generator is the modified Park and Miller generator (based on Park
and Miller, 1988, with modifications due to Park). It is a linear congruential generator,
which in C form can be written as (assuming an int is 32 bits):

#define PM_A 48271 /* a */
#define PM_M 2147483647 /¥ m=2"31 -1 %/
#define PM_Q 44488 /*m / ax/
#define PM_R 3399 /¥ m % oa x/
#define PM_INIT 198195252

static int s_iSeedPM = PM_INIT; /* initial seed */
double DRanPM(void)

{

static double dMinv = 1.0 / PM_M;
int test, lo, hi;

test = s_iSeedPM;

hi = (test / PM_Q);

lo = test - hi * PM_Q; /* test % PM_Q */
test = lo * PM_A - hi * PM_R;

s_iSeedPM = (test > 0) 7 test : test + PM_M;

return s_iSeedPM * dMinv;

In the Ox versionlo = test % PM_Q has beenreplaced iy = test - hi *
PM_Q for faster computation.

A7.2 Marsaglia’s generator

Code for this random number generator was posted by Prof. Marsaglia to the newsgroup
sci.stat.math (Marsaglia, 1997, also see Marsaglia and Zaman, 1994). It is a multiply
with carry generator with period ef 2°°. The C code used in Ox is slightly rewritten
from the original as:

#define GM_INIT_1 362436069

#define GM_INIT_2 521288629
static unsigned int s_uiSeed1GM = GM_INIT_1;

137

138 Appendix A7 Random Number Generators

static unsigned int s_uiSeed2GM = GM_INIT_2;

#define GM_MUL1 36969

#define GM_MUL2 18000

double DRanGM(void)

{ /* 1/2°32=2.3283064370808e-010 */

static double dMinv = 2.32830643708e-010;

s_uiSeed1GM = GM_MUL1 * (s_uiSeed1GM & OxFFFF) + (s_uiSeed1GM >> 16);
s_uiSeed2GM = GM_MUL2 * (s_uiSeed2GM & OxFFFF) + (s_uiSeed2GM >> 16);

return ((s_uiSeed1GM << 16) + (s_uiSeed2GM & OxFFFF)) * dMinv;
}

A7.3 LUEcuyer’s generator

Code for this random number generator is published in figure 1 of L'Ecuyer (1997). It
is a linear shift register (or Tausworthe) generator with periost & 13. The C code
used in Ox is slightly rewritten from the original as:

#define LFSR_B(s, al, a2) (((s << al) = s) >> a2)
#define LFSR_S(s, al, a2, b) (((s & al) << a2) ~ b)
#define LELFSR_INIT1 (1+ 111)

#define LELFSR_INIT2 (7+ 1111)

#define LELFSR_INIT3 (15+ 11111)

#define LELFSR_INIT4 (127+111111)

static unsigned int s_uiSeedlLE = LELFSR_INIT1;
static unsigned int s_uiSeed2LE = LELFSR_INITZ2;
static unsigned int s_uiSeed3LE = LELFSR_INIT3;
static unsigned int s_uiSeed4LE = LELFSR_INIT4;

static double JDCALL DRanLE_lfsr(void)
{ /* 1.0 / 4294967296 */
static double factor = 2.3283064365387e-010;

unsigned int b;

b = LFSR_B(s_uiSeedlLE, 6,13);
s_uiSeedl1LE = LFSR_S(s_uiSeed1LE,4294967294,18,b);
b = LFSR_B(s_uiSeed2LE, 2,27);
s_uiSeed2LE = LFSR_S(s_uiSeed2LE, 4294967288, 2,b);
b = LFSR_B(s_uiSeed3LE,13,21);
s_uiSeed3LE = LFSR_S(s_uiSeed3LE, 4294967280, 7,b);
b = LFSR_B(s_uiSeed4LE, 3,12);
s_uiSeed4LE = LFSR_S(s_uiSeed4LE,4294967168,13,b);

return (s_uiSeedlLE ~ s_uiSeed2LE ~ s_uiSeed3LE ~ s_uiSeed4LE) * factor;
}

The four seeds need to satigfy 1,> 7,> 15,> 127) respectively. The actual
seeds choosen here satisfy this restrictions. New seeds will only be excepted when they
satisfy this restriction.

References

Doornik, J. A. and Ooms, M. (2001ntroduction to Ox London: Timberlake Consultants Press.

L'Ecuyer, P. (1997). Tables of maximally-equidistributed combined LSFR generators. Mimeo,
University of Montreal, Canada.

Marsaglia, G. (1997). A random number generator for C. Discussion paper, Posting on usenet
newsgroup sci.stat.math.

Marsaglia, G. and Zaman, A. (1994). Some portable very-long-period random number generat-
ors. Computers in Physic8, 117-121.

Park, S. and Miller, K. (1988). Random number generators: Good ones are hard t€éimd.
munications of the ACM31, 1192-1201.

139

Subject Index

= 115

" v string constant 109

> 2 character constant 108
> transpose 122

() function call 120

() parentheses 120

*~ direct multiplication 123
* multiplication 123

+ addition 125

- subtraction 125

.7 dot-transpose 122

.*. Kronecker product 123
.* dot multiplication 123
./=isnotdotequalto 126
./ dot division 123
.<=dot less than or equalto 126
.<dotlessthan 126
.==isdotequalto 126

.>=dot greater than or equal to 126

.>dot greater than 126
.&& logical dot-AND 126
.~ dot power 123

.eqv (logical dot-EQV) 127
.not logical dot-NOT 126
.or (logical dot-OR) 127
.or logical dot-AND 126
.xor (logical dot-XOR) 127
.|| logical dot-OR 127

/* */comment 107

// comment 107
/=isnotequalto 127

/ division 123

Ov double constant 108
0x hexadecimal constant 108
<=lessthan orequalto 127
<lessthan 127
==jisequalto 127

= assignment 128

>= greater than or equal to 127
> greater than 127

[] indexing 121

% modulo operator 125

&& logical AND 127

140

& address operator 120

! factorial 123

@@ comment 107

{} matrix constant 109

~ horizontal concatenation 125
~ power 123

and (logical AND) 127

eqv (logical EQV) 128

not (logical not) 127

or (logical OR) 128

xor (logical XOR) 128

|| logical OR 128

| vertical concatenation 125

{ ...} 115

output command 118

print andformat command 118

Additive expressions 125
Assignment expressiohs 128
Assignment statements 115

Borland C++ 4
break 117

call 117

Call statements 117
callback.c 8
callback.ox 9

Character constarits 108
cleaclear 115
clearglearg 115
Command statements 118
Commands 118
Comment 107
Concatenation expressions 125
Conditional compilation 129
Constant definition 130
Constant expression 110
Constant expressions 128
Constants 108

continue 117

declare 112
Declare statement 112

SUBJECT INDEX

141

#define 129, 130

#definecs 129, 130

Division 123

DLL seeDynamic linking

do until 116

do while 116

Dot-relational expressions 126
Double constants 108
Dynamic linking 1

Name decoration 4
Path to the library 5
Threes example 2
Windows calling conventions 4

#else 129

else 116,126

elseif 116

#endif 129

Escape sequence 109
Expressions 118
external 112

External declarations 111
External statement 112
external-statement-list 115

Factorial 123

File inclusion 129

fn 113

for 116

format 118

Function (procedure, fn, keyword)
definitions 113

Function arguments 113

Functions 113-114

G20x 136
Gauss, comparison with Ox 131
Gauss, translationto Ox 136
GiveWin 11, 13, 18, 23, 26

— Developer’s Kit 23
gosub 117
goto 117

if 116, 126
#ifdef 129
#ifdos 129
#iflight 129
#ifndef 129
#ifos2win 129
#ifreal 129
#ifunix 129
Implicit print 118
#include 129

Indexing 121
Integer constants 108
Iteration statements 116

jdmath.h 38

jdsystem.h 21

jdtypes.h 38

Jump and pop statements 117

keyword 113
Keywords 108
Kronecker product 123

Labels 115

Lahey Fortran 20

letlet 115

Linux 5

Logical dot-AND expressions 126
Logical dot-EQV expressions 127
Logical dot-NOT expressions 126
Logical dot-OR expressions 127
Logical dot-XOR expressions 127
Logical-AND expressions 127
Logical-EQV expressions 128
Logical-NOT expressions 127
Logical-OR expressions 128
Logical-XOR expressions 128
Loops 116-117

Lvalue 111,118

main() 11,24

Matrix constants 109
Modelbase class 66-77
Modelbase: :Batch() 75
Modelbase: :BatchMethod() 76

Modelbase: :BatchVarStatus() 77
Modelbase: :GetBatchModelSettings ()

77
Modelbase: :ReceiveData() 70

Modelbase: :ReceiveDialog() 71

Modelbase: :ReceiveModel() 71
Modelbase: :SendDialog() 72

Modelbase: :SendFunctions() 72

Modelbase: :SendMenu() 73

Modelbase: :SendMethods() 74
Modelbase: :SendResults() 74
Modelbase: :SendSpecials() 74

Modelbase: :SendVarStatus() 74

Modulo expressions 125
Multiplicative expressions 123

NaN (Not a Number) 109
Newline character 109

142 SUBJECT INDEX

output 118 Watcom Fortran 20
0X3PATH environment variable 5, 129 Windows 1
oxexport.h 1,2

OxGauss

Function Summary 84
Language reference 107
Using— 78
OxGiveWin.h 23, 26
OxGiveWin2.dll 23
OxPack 66-77
0xPackDialog() 69
OxPackGetData() 70

PcNaive 11

pop 117

Postfix expressions 121
Power expressions 123
Preprocessing 128
Primary expressions 120
print 118

proc 113

RanAppDlg.c 13

RanApp.c 11

ranapp.ox 13

Random number generators 137
Relational expressions 127
return 117

Scope 110

Selection statements 116
Space 107

Statements 115

String comparison 127
String constants 109
Sun 5

threes.c 2

Tokens 107
Transpose 122
Type conversion 111
Types 110

Unary minus 123

Unary plus 123

#undef 129

Uniform

— random number generator 137
Unix 1,5

Visual Basic 16, 36
Visual C++ 4,11

Watcom C++ 4

