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Instrumental variables estimators

Regression with Instrumental Variables

What are instrumental variables (IV) methods? Most widely known as
a solution to endogenous regressors: explanatory variables correlated
with the regression error term, IV methods provide a way to
nonetheless obtain consistent parameter estimates.

Although IV estimators address issues of endogeneity, the violation of
the zero conditional mean assumption caused by endogenous
regressors can also arise for two other common causes: measurement
error in regressors (errors-in-variables) and omitted-variable bias. The
latter may arise in situations where a variable known to be relevant for
the data generating process is not measurable, and no good proxies
can be found.
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Instrumental variables estimators

First let us consider a path diagram illustrating the problem addressed
by IV methods. We can use ordinary least squares (OLS) regression to
consistently estimate a model of the following sort.

Standard regression: y = xb + u
no association between x and u; OLS consistent
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Instrumental variables estimators

However, OLS regression breaks down in the following circumstance:

Endogeneity: y = xb + u
correlation between x and u; OLS inconsistent
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The correlation between x and u (or the failure of the zero conditional
mean assumption E [u|x ] = 0) can be caused by any of several factors.
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Instrumental variables estimators Endogeneity

Endogeneity

We have stated the problem as that of endogeneity: the notion that two
or more variables are jointly determined in the behavioral model. This
arises naturally in the context of a simultaneous equations model such
as a supply-demand system in economics, in which price and quantity
are jointly determined in the market for that good or service.

A shock or disturbance to either supply or demand will affect both the
equilibrium price and quantity in the market, so that by construction
both variables are correlated with any shock to the system. OLS
methods will yield inconsistent estimates of any regression including
both price and quantity, however specified.
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Instrumental variables estimators Endogeneity

As a different example, consider a cross-sectional regression of public
health outcomes (say, the proportion of the population in various cities
suffering from a particular childhood disease) on public health
expenditures per capita in each of those cities. We would hope to find
that spending is effective in reducing incidence of the disease, but we
also must consider the reverse causality in this relationship, where the
level of expenditure is likely to be partially determined by the historical
incidence of the disease in each jurisdiction.

In this context, OLS estimates of the relationship will be biased even if
additional controls are added to the specification. Although we may
have no interest in modeling public health expenditures, we must be
able to specify such an equation in order to identify the relationship of
interest, as we discuss henceforth.
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Instrumental variables estimators Endogeneity

The solution provided by IV methods may be viewed as:

Instrumental variables regression: y = xb + u
z uncorrelated with u, correlated with x

z - x - y

u
��
�
��

�
��*6

The additional variable z is termed an instrument for x . In general, we
may have many variables in x , and more than one x correlated with u.
In that case, we shall need at least that many variables in z.
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Instrumental variables estimators Choice of instruments

Choice of instruments

To deal with the problem of endogeneity in a supply-demand system, a
candidate z will affect (e.g.) the quantity supplied of the good, but not
directly impact the demand for the good. An example for an agricultural
commodity might be temperature or rainfall: clearly exogenous to the
market, but likely to be important in the production process.

For the public health example, we might use per capita income in each
city as an instrument or z variable. It is likely to influence public health
expenditure, as cities with a larger tax base might be expected to
spend more on all services, and will not be directly affected by the
unobserved factors in the primary relationship.
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Instrumental variables estimators Choice of instruments

But why should we not always use IV?

It may be difficult to find variables that can serve as valid instruments.
Many variables that have an effect on included endogenous variables
also have a direct effect on the dependent variable.

IV estimators are innately biased, and their finite-sample properties
are often problematic. Thus, most of the justification for the use of IV is
asymptotic. Performance in small samples may be poor.

The precision of IV estimates is lower than that of OLS estimates (least
squares is just that). In the presence of weak instruments (excluded
instruments only weakly correlated with included endogenous
regressors) the loss of precision will be severe, and IV estimates may
be no improvement over OLS. This suggests we need a method to
determine whether a particular regressor must be treated as
endogenous.
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The IV-GMM estimator

IV estimation as a GMM problem

Before discussing further the motivation for various weak instrument
diagnostics, we define the setting for IV estimation as a Generalized
Method of Moments (GMM) optimization problem. Economists
consider GMM to be the invention of Lars Hansen in his 1982
Econometrica paper, but as Alistair Hall points out in his 2005 book,
the method has its antecedents in Karl Pearson’s Method of Moments
[MM] (1895) and Neyman and Egon Pearson’s minimum Chi-squared
estimator [MCE] (1928). Their MCE approach overcomes the difficulty
with MM estimators when there are more moment conditions than
parameters to be estimated. This was recognized by Ferguson (Ann.
Math. Stat. 1958) for the case of i .i .d . errors, but his work had no
impact on the econometric literature.
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The IV-GMM estimator

The model:
y = Xβ + u, u ∼ (0,Ω)

X (N × k). Define a matrix Z (N × `) where ` ≥ k . This is the
Generalized Method of Moments IV (IV-GMM) estimator. The `
instruments give rise to a set of ` moments:

gi(β) = Z ′i ui = Z ′i (yi − xiβ), i = 1,N

where each gi is an `-vector. The method of moments approach
considers each of the ` moment equations as a sample moment, which
we may estimate by averaging over N:

ḡ(β) =
1
N

N∑
i=1

zi(yi − xiβ) =
1
N

Z ′u

The GMM approach chooses β̂ to solve ḡ(β̂GMM) = 0.
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The IV-GMM estimator Exact identification and 2SLS

If ` = k , the equation to be estimated is said to be exactly identified by
the order condition for identification: that is, there are as many
excluded instruments as included right-hand endogenous variables.
The method of moments problem is then k equations in k unknowns,
and a unique solution exists, equivalent to the standard IV estimator:

β̂IV = (Z ′X )−1Z ′y

In the case of overidentification (` > k ) we may define a set of k
instruments:

X̂ = Z ′(Z ′Z )−1Z ′X = PZ X

which gives rise to the two-stage least squares (2SLS) estimator

β̂2SLS = (X̂ ′X )−1X̂ ′y = (X ′PZ X )−1X ′PZ y

which despite its name is computed by this single matrix equation.
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The IV-GMM estimator The IV-GMM approach

The IV-GMM approach

In the 2SLS method with overidentification, the ` available instruments
are “boiled down" to the k needed by defining the PZ matrix. In the
IV-GMM approach, that reduction is not necessary. All ` instruments
are used in the estimator. Furthermore, a weighting matrix is employed
so that we may choose β̂GMM so that the elements of ḡ(β̂GMM) are as
close to zero as possible. With ` > k , not all ` moment conditions can
be exactly satisfied, so a criterion function that weights them
appropriately is used to improve the efficiency of the estimator.

The GMM estimator minimizes the criterion

J(β̂GMM) = N ḡ(β̂GMM)′W ḡ(β̂GMM)

where W is a `× ` symmetric weighting matrix.
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close to zero as possible. With ` > k , not all ` moment conditions can
be exactly satisfied, so a criterion function that weights them
appropriately is used to improve the efficiency of the estimator.

The GMM estimator minimizes the criterion
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The IV-GMM estimator The GMM weighting matrix

Solving the set of FOCs, we derive the IV-GMM estimator of an
overidentified equation:

β̂GMM = (X ′ZWZ ′X )−1X ′ZWZ ′y

which will be identical for all W matrices which differ by a factor of
proportionality. The optimal weighting matrix, as shown by Hansen
(1982), chooses W = S−1 where S is the covariance matrix of the
moment conditions to produce the most efficient estimator:

S = E [Z ′uu′Z ] = limN→∞ N−1[Z ′ΩZ ]

With a consistent estimator of S derived from 2SLS residuals, we
define the feasible IV-GMM estimator as

β̂FEGMM = (X ′Z Ŝ−1Z ′X )−1X ′Z Ŝ−1Z ′y

where FEGMM refers to the feasible efficient GMM estimator.
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The IV-GMM estimator IV-GMM and the distribution of u

The derivation makes no mention of the form of Ω, the
variance-covariance matrix (vce) of the error process u. If the errors
satisfy all classical assumptions are i .i .d ., S = σ2

uIN and the optimal
weighting matrix is proportional to the identity matrix. The IV-GMM
estimator is merely the standard IV (or 2SLS) estimator.

If there is heteroskedasticity of unknown form, we usually compute
robust standard errors in any Stata estimation command to derive a
consistent estimate of the vce. In this context,

Ŝ =
1
N

N∑
i=1

û2
i Z ′i Zi

where û is the vector of residuals from any consistent estimator of β
(e.g., the 2SLS residuals). For an overidentified equation, the IV-GMM
estimates computed from this estimate of S will be more efficient
than 2SLS estimates.
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The IV-GMM estimator IV-GMM and the distribution of u

We must distinguish the concept of IV/2SLS estimation with robust
standard errors from the concept of estimating the same equation with
IV-GMM, allowing for arbitrary heteroskedasticity. Compare an
overidentified regression model estimated (a) with IV and classical
standard errors and (b) with robust standard errors. Model (b) will
produce the same point estimates, but different standard errors in the
presence of heteroskedastic errors.

However, if we reestimate that overidentified model using the GMM
two-step estimator, we will get different point estimates because we
are solving a different optimization problem: one in the `-space of the
instruments (and moment conditions) rather than the k -space of the
regressors, and ` > k . We will also get different standard errors, and in
general smaller standard errors as the IV-GMM estimator is more
efficient. This does not imply, however, that summary measures
of fit will improve.
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The IV-GMM estimator IV-GMM cluster-robust estimates

If errors are considered to exhibit arbitrary intra-cluster correlation in a
dataset with M clusters, we may derive a cluster-robust IV-GMM
estimator using

Ŝ =
M∑

j=1

û′j ûj

where
ûj = (yj − xj β̂)X ′Z (Z ′Z )−1zj

The IV-GMM estimates employing this estimate of S will be both robust
to arbitrary heteroskedasticity and intra-cluster correlation, equivalent
to estimates generated by Stata’s cluster(varname) option. For an
overidentified equation, IV-GMM cluster-robust estimates will be more
efficient than 2SLS estimates.
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The IV-GMM estimator IV-GMM cluster-robust estimates

The concept of the cluster-robust covariance matrix has been
extended by Cameron, Gelbach and Miller (NBER TWP327, 2006) and
Thompson (SSRN, 2009) to define two-way clustering. This allows for
arbitrary within-cluster correlation in two cluster dimensions. For
instance, in a panel dataset, we may want to allow observations
belonging to each individual unit to be arbitrarily correlated, and we
may want to allow observations coming from a particular time period to
be arbitrarily correlated.

Heretofore, a common tactic involved (one-way) clustering by unit
(e.g., firm), and the introduction of a set of time (e.g., year) dummies.
Although the latter account for any macro-level heterogeneity, they do
not relax the assumption of independence across units at each point in
time, which may be highly unlikely. Thus, it may be beneficial to utilize
two-way clustering in estimating the covariance matrix.
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The IV-GMM estimator IV-GMM HAC estimates

The IV-GMM approach may also be used to generate HAC standard
errors: those robust to arbitrary heteroskedasticity and autocorrelation.
Although the best-known HAC approach in econometrics is that of
Newey and West, using the Bartlett kernel (per Stata’s newey), that is
only one choice of a HAC estimator that may be applied to an IV-GMM
problem. Baum–Schaffer–Stillman’s ivreg2 (from the SSC Archive)
and Stata 10’s ivregress provide several choices for kernels. For
some kernels, the kernel bandwidth (roughly, number of lags
employed) may be chosen automatically in either command.

The HAC options may be combined with one- or two-way clustering.
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The IV-GMM estimator Implementation in Stata

The ivreg2 command

The estimators we have discussed are available from Baum, Schaffer
and Stillman’s ivreg2 package, revised February 2010 (ssc
describe ivreg2). The ivreg2 command has the same basic
syntax as Stata’s older ivreg command:

ivreg2 depvar [varlist1] (varlist2=instlist) ///
[if] [in] [, options]

The ` variables in varlist1 and instlist comprise Z , the matrix of
instruments. The k variables in varlist1 and varlist2 comprise
X . Both matrices by default include a units vector.
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The IV-GMM estimator ivreg2 options

By default ivreg2 estimates the IV estimator, or 2SLS estimator if
` > k . If the gmm2s option is specified in conjunction with robust,
cluster() or bw(), it estimates the IV-GMM estimator.

With the robust option, the vce is heteroskedasticity-robust.

With the cluster(varname) or
cluster(varname1 varname2) option, the vce is cluster-robust.

With the robust and bw( ) options, the vce is HAC with the default
Bartlett (“Newey–West”) kernel. Other kernel( ) choices lead to
alternative HAC estimators. In ivreg2, both robust and bw( )
options must be specified to produce HAC. Estimates produced with
bw( ) alone are robust to arbitrary autocorrelation but assume
homoskedasticity.
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The IV-GMM estimator Example of IV and IV-GMM estimation

Example of IV and IV-GMM estimation

We illustrate with a wage equation estimated from the Griliches
dataset (griliches76) of very young men’s wages. Their log(wage)
is explained by completed years of schooling, experience, job tenure
and IQ score.

The IQ variable is considered endogenous, and instrumented with
three factors: their mother’s level of education (med), their score on a
standardized test (kww) and their age. The estimation in ivreg2 is
performed with

ivreg2 lw s expr tenure (iq = med kww age)

where the parenthesized expression defines the included endogenous
and excluded exogenous variables. You could also use official Stata’s
ivregress 2sls.
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The IV-GMM estimator Example of IV and IV-GMM estimation

. esttab, label stat(rmse) mtitles(IV IVrob IVGMMrob) nonum

IV IVrob IVGMMrob

iq score -0.00509 -0.00509 -0.00676
(-1.06) (-1.01) (-1.34)

completed years of~g 0.122*** 0.122*** 0.128***
(7.68) (7.51) (7.88)

experience, years 0.0357*** 0.0357*** 0.0368***
(5.15) (5.10) (5.26)

tenure, years 0.0405*** 0.0405*** 0.0443***
(4.78) (4.51) (4.96)

Constant 4.441*** 4.441*** 4.523***
(14.22) (13.21) (13.46)

rmse 0.366 0.366 0.372

t statistics in parentheses

* p<0.05, ** p<0.01, *** p<0.001
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The IV-GMM estimator Example of IV and IV-GMM estimation

These three columns compare standard IV (2SLS) estimates, IV with
robust standard errors, and IV-GMM with robust standard errors,
respectively. Notice that the coefficients’ point estimates change when
IV-GMM is employed, and that their t-statistics are larger than those of
robust IV. Note also that the IQ score is not significant in any of these
models.
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Tests of overidentifying restrictions

Tests of overidentifying restrictions

If and only if an equation is overidentified, we may test whether the
excluded instruments are appropriately independent of the error
process. That test should always be performed when it is possible to
do so, as it allows us to evaluate the validity of the instruments.

A test of overidentifying restrictions regresses the residuals from an IV
or 2SLS regression on all instruments in Z . Under the null hypothesis
that all instruments are uncorrelated with u, the test has a
large-sample χ2(r) distribution where r is the number of overidentifying
restrictions.
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Tests of overidentifying restrictions

Under the assumption of i .i .d . errors, this is known as a Sargan test,
and is routinely produced by ivreg2 for IV and 2SLS estimates. It can
also be calculated after ivreg estimation with the overid command,
which is part of the ivreg2 suite. After ivregress, the command
estat overid provides the test.
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Tests of overidentifying restrictions

If we have used IV-GMM estimation in ivreg2, the test of
overidentifying restrictions becomes J: the GMM criterion function.
Although J will be identically zero for any exactly-identified equation, it
will be positive for an overidentified equation. If it is “too large”, doubt is
cast on the satisfaction of the moment conditions underlying GMM.

The test in this context is known as the Hansen test or J test, and is
calculated by ivreg2 when the gmm2s option is employed.

The Sargan–Hansen test of overidentifying restrictions should be
performed routinely in any overidentified model estimated with
instrumental variables techniques. Instrumental variables techniques
are powerful, but if a strong rejection of the null hypothesis of the
Sargan–Hansen test is encountered, you should strongly doubt the
validity of the estimates.
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Tests of overidentifying restrictions

For instance, let’s rerun the last IV-GMM model we estimated and
focus on the test of overidentifying restrictions provided by the Hansen
J statistic. The model is overidentified by two degrees of freedom, as
there is one endogenous regressor and three excluded instruments.
We see that the J statistic strongly rejects its null, casting doubts on
the quality of these estimates.

Let’s reestimate the model excluding age from the instrument list and
see what happens. We will see that the sign and significance of the key
endogenous regressor changes as we respecify the instrument list,
and the p-value of the J statistic becomes large when age is excluded.
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Tests of overidentifying restrictions

Example: Test of overidentifying restrictions

. esttab, label stat(j jdf jp) mtitles(age no_age) nonum

age no_age

iq score -0.00676 0.0181**
(-1.34) (2.97)

completed years of~g 0.128*** 0.0514**
(7.88) (2.63)

experience, years 0.0368*** 0.0440***
(5.26) (5.58)

tenure, years 0.0443*** 0.0303***
(4.96) (3.48)

Constant 4.523*** 2.989***
(13.46) (7.58)

j 49.84 0.282
jdf 2 1
jp 1.50e-11 0.595

t statistics in parentheses

* p<0.05, ** p<0.01, *** p<0.001

. sjlog close
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Tests of overidentifying restrictions Testing a subset of overidentifying restrictions

We may be quite confident of some instruments’ independence from u
but concerned about others. In that case a GMM distance or C test
may be used. The orthog( ) option of ivreg2 tests whether a
subset of the model’s overidentifying restrictions appear to be satisfied.

This is carried out by calculating two Sargan–Hansen statistics: one for
the full model and a second for the model in which the listed variables
are (a) considered endogenous, if included regressors, or (b) dropped,
if excluded regressors. In case (a), the model must still satisfy the
order condition for identification. The difference of the two
Sargan–Hansen statistics, often termed the GMM distance or C
statistic, will be distributed χ2 under the null hypothesis that the
specified orthogonality conditions are satisfied, with d.f. equal to the
number of those conditions.
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Tests of overidentifying restrictions Testing a subset of overidentifying restrictions

A variant on this strategy is implemented by the endog( ) option of
ivreg2, in which one or more variables considered endogenous can
be tested for exogeneity. The C test in this case will consider whether
the null hypothesis of their exogeneity is supported by the data.

If all endogenous regressors are included in the endog( ) option, the
test is essentially a test of whether IV methods are required to
estimate the equation. If OLS estimates of the equation are consistent,
they should be preferred. In this context, the test is equivalent to a
Hausman test comparing IV and OLS estimates, as implemented by
Stata’s hausman command with the sigmaless option. Using
ivreg2, you need not estimate and store both models to generate the
test’s verdict.
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Tests of overidentifying restrictions Testing a subset of overidentifying restrictions

For instance, with the model above, we might question whether IV
techniques are needed. We can conduct the C test via:

ivreg2 lw s expr tenure (iq=med kww), gmm2s robust endog(iq)

where the endog(iq) option tests the null hypothesis that iq is
properly exogenous in this model. The test statistic has a p-value of
0.0108, suggesting that the data overwhelmingly reject the use of OLS
in favor of IV. At the same time, the J statistic (with a p-value of 0.60)
indicates that the overidentifying restrictions are not rejected.
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Testing for weak instruments

The weak instruments problem

Instrumental variables methods rely on two assumptions: the excluded
instruments are distributed independently of the error process, and
they are sufficiently correlated with the included endogenous
regressors. Tests of overidentifying restrictions address the first
assumption, although we should note that a rejection of their null may
be indicative that the exclusion restrictions for these instruments may
be inappropriate. That is, some of the instruments have been
improperly excluded from the regression model’s specification.
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Testing for weak instruments

The specification of an instrumental variables model asserts that the
excluded instruments affect the dependent variable only indirectly,
through their correlations with the included endogenous variables. If
an excluded instrument exerts both direct and indirect influences on
the dependent variable, the exclusion restriction should be rejected.
This can be readily tested by including the variable as a regressor.

In our earlier example we saw that including age in the excluded
instruments list caused a rejection of the J test. We had assumed that
age could be treated as excluded from the model. Is that assumption
warranted?

If age is entered as a regressor, it has a t-statistic over 8. Thus, its
rejection as an excluded instrument may well reflect the
misspecification of the equation, omitting age.
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Testing for weak instruments

To test the second assumption—that the excluded instruments are
sufficiently correlated with the included endogenous regressors—we
should consider the goodness-of-fit of the “first stage” regressions
relating each endogenous regressor to the entire set of instruments.

It is important to understand that the theory of single-equation (“limited
information”) IV estimation requires that all columns of X are
conceptually regressed on all columns of Z in the calculation of the
estimates. We cannot meaningfully speak of “this variable is an
instrument for that regressor” or somehow restrict which instruments
enter which first-stage regressions. Stata’s ivregress or ivreg2 will
not let you do that because such restrictions only make sense in the
context of estimating an entire system of equations by full-information
methods (for instance, with reg3).

Christopher F Baum (Boston College) IVs and Panel Data Feb 2009 35 / 43



Testing for weak instruments

To test the second assumption—that the excluded instruments are
sufficiently correlated with the included endogenous regressors—we
should consider the goodness-of-fit of the “first stage” regressions
relating each endogenous regressor to the entire set of instruments.

It is important to understand that the theory of single-equation (“limited
information”) IV estimation requires that all columns of X are
conceptually regressed on all columns of Z in the calculation of the
estimates. We cannot meaningfully speak of “this variable is an
instrument for that regressor” or somehow restrict which instruments
enter which first-stage regressions. Stata’s ivregress or ivreg2 will
not let you do that because such restrictions only make sense in the
context of estimating an entire system of equations by full-information
methods (for instance, with reg3).

Christopher F Baum (Boston College) IVs and Panel Data Feb 2009 35 / 43



Testing for weak instruments

The first and ffirst options of ivreg2 present several useful
diagnostics that assess the first-stage regressions. If there is a single
endogenous regressor, these issues are simplified, as the instruments
either explain a reasonable fraction of that regressor’s variability or not.
With multiple endogenous regressors, diagnostics are more
complicated, as each instrument is being called upon to play a role in
each first-stage regression.

With sufficiently weak instruments, the asymptotic identification status
of the equation is called into question. An equation identified by the
order and rank conditions in a finite sample may still be effectively
unidentified.
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Testing for weak instruments

As Staiger and Stock (Econometrica, 1997) show, the weak
instruments problem can arise even when the first-stage t- and F -tests
are significant at conventional levels in a large sample. In the worst
case, the bias of the IV estimator is the same as that of OLS, IV
becomes inconsistent, and instrumenting only aggravates the problem.
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Testing for weak instruments

Beyond the informal “rule-of-thumb” diagnostics such as F > 10,
ivreg2 computes several statistics that can be used to critically
evaluate the strength of instruments. We can write the first-stage
regressions as

X = Z Π + v

With X1 as the endogenous regressors, Z1 the excluded instruments
and Z2 as the included instruments, this can be partitioned as

X1 = [Z1Z2] [Π′11Π′12]′ + v1

The rank condition for identification states that the L× K1 matrix Π11
must be of full column rank.
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Testing for weak instruments The Anderson canonical correlation statistic

We do not observe the true Π11, so we must replace it with an
estimate. Anderson’s (John Wiley, 1984) approach to testing the rank
of this matrix (or that of the full Π matrix) considers the canonical
correlations of the X and Z matrices. If the equation is to be identified,
all K of the canonical correlations will be significantly different from
zero.

The squared canonical correlations can be expressed as eigenvalues
of a matrix. Anderson’s CC test considers the null hypothesis that the
minimum canonical correlation is zero. Under the null, the test statistic
is distributed χ2 with (L− K + 1) d.f., so it may be calculated even for
an exactly-identified equation. Failure to reject the null suggests the
equation is unidentified. ivreg2 reports this Lagrange Multiplier (LM)
statistic.
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Testing for weak instruments The Cragg–Donald statistic

The Cragg–Donald statistic is a closely related test of the rank of a
matrix. While the Anderson CC test is a LR test, the C–D test is a
Wald statistic, with the same asymptotic distribution. The C–D statistic
plays an important role in Stock and Yogo’s work (see below). Both the
Anderson and C–D tests are reported by ivreg2 with the first
option.

Recent research by Kleibergen and Paap (KP) (J. Econometrics, 2006)
has developed a robust version of a test for the rank of a matrix: e.g.
testing for underidentification. The statistic has been implemented by
Kleibergen and Schaffer as command ranktest. If non-i .i .d . errors
are assumed, the ivreg2 output contains the K–P rk statistic in place
of the Anderson canonical correlation statistic as a test of
underidentification.
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Testing for weak instruments The Stock and Yogo approach

Stock and Yogo (Camb. U. Press festschrift, 2005) propose testing for
weak instruments by using the F -statistic form of the C–D statistic.
Their null hypothesis is that the estimator is weakly identified in the
sense that it is subject to bias that the investigator finds unacceptably
large.

Their test comes in two flavors: maximal relative bias (relative to the
bias of OLS) and maximal size. The former test has the null that
instruments are weak, where weak instruments are those that can lead
to an asymptotic relative bias greater than some level b. This test uses
the finite sample distribution of the IV estimator, and can only be
calculated where the appropriate moments exist (when the equation is
suitably overidentified: the mth moment exists iff m < (L−K + 1)). The
test is routinely reported in ivreg2 and ivregress output when it
can be calculated, with the relevant critical values calculated by
Stock and Yogo.
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Testing for weak instruments The Stock and Yogo approach

The second test proposed by Stock and Yogo is based on the
performance of the Wald test statistic for the endogenous regressors.
Under weak identification, the test rejects too often. The test statistic is
based on the rejection rate r tolerable to the researcher if the true
rejection rate is 5%. Their tabulated values consider various values for
r . To be able to reject the null that the size of the test is unacceptably
large (versus 5%), the Cragg–Donald F statistic must exceed the
tabulated critical value.

The Stock–Yogo test statistics, like others discussed above, assume
i .i .d . errors. The Cragg–Donald F can be robustified in the absence of
i .i .d . errors by using the Kleibergen–Paap rk statistic, which ivreg2
reports in that circumstance.
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Further reading

Further reading

There are many important considerations relating to the use of IV
techniques, including LIML (limited-information maximum likelihood
estimation) and GMM-CUE (continuously updated GMM estimates).
For more details, please see

Enhanced routines for instrumental variables/GMM estimation and
testing. Baum CF, Schaffer ME, Stillman S, Stata Journal 7:4,
2007. Boston College Economics working paper no. 667,
available from http://ideas.repec.org.

An Introduction to Modern Econometrics Using Stata, Baum CF,
Stata Press, 2006 (particularly Chapter 8).

Instrumental variables and GMM: Estimation and testing. Baum
CF, Schaffer ME, Stillman S, Stata Journal 3:1–31, 2003.
Freely available from http://stata-journal.com.
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