
Mata in Stata

Christopher F Baum

Faculty Micro Resource Center
Boston College

January 2007

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 1 / 40

Mata in Stata Introduction

Mata: Stata’s matrix programming language

As of version 9, Stata contains a full-fledged matrix programming
language, Mata, with all of the capabilities of MATLAB, Ox or GAUSS.
Mata can be used interactively, or Mata functions can be developed to
be called from Stata. A large library of mathematical and matrix
functions is provided in Mata, including equation solvers,
decompositions, eigensystem routines and probability density
functions. Mata functions can access Stata’s variables and can work
with virtual matrices (views) of a subset of the data in memory. Mata
also supports file input/output.

Mata code is automatically compiled into bytecode, like Java, and can
be stored in object form or included in-line in a Stata do-file or ado-file.
Mata code runs many times faster than the interpreted ado-file
language, providing significant speed enhancements to many
computationally burdensome tasks.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 2 / 40

Mata in Stata Introduction

Mata: Stata’s matrix programming language

As of version 9, Stata contains a full-fledged matrix programming
language, Mata, with all of the capabilities of MATLAB, Ox or GAUSS.
Mata can be used interactively, or Mata functions can be developed to
be called from Stata. A large library of mathematical and matrix
functions is provided in Mata, including equation solvers,
decompositions, eigensystem routines and probability density
functions. Mata functions can access Stata’s variables and can work
with virtual matrices (views) of a subset of the data in memory. Mata
also supports file input/output.

Mata code is automatically compiled into bytecode, like Java, and can
be stored in object form or included in-line in a Stata do-file or ado-file.
Mata code runs many times faster than the interpreted ado-file
language, providing significant speed enhancements to many
computationally burdensome tasks.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 2 / 40

Mata in Stata Stata’s traditional matrix commands

Mata circumvents the limitations of Stata’s traditional matrix
commands. Stata matrices must obey the maximum matsize: 800
rows or columns in Intercooled Stata. Thus, code relying on Stata
matrices is fragile. Stata’s matrix language does contain commands
such as matrix accum which can build a cross-product matrix from
variables of any length, but for many applications the limitation of
matsize is binding.

Even in Stata/SE with the possibility of a much larger matsize,
Stata’s matrices have another drawback. Large matrices consume
large amounts of memory, and an operation that converts Stata
variables into a matrix or vice versa will require twice the memory
needed for that set of variables.

Last but surely not least, ado-file code written in the matrix language
with explicit subscript references is slow.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 3 / 40

Mata in Stata Stata’s traditional matrix commands

Mata circumvents the limitations of Stata’s traditional matrix
commands. Stata matrices must obey the maximum matsize: 800
rows or columns in Intercooled Stata. Thus, code relying on Stata
matrices is fragile. Stata’s matrix language does contain commands
such as matrix accum which can build a cross-product matrix from
variables of any length, but for many applications the limitation of
matsize is binding.

Even in Stata/SE with the possibility of a much larger matsize,
Stata’s matrices have another drawback. Large matrices consume
large amounts of memory, and an operation that converts Stata
variables into a matrix or vice versa will require twice the memory
needed for that set of variables.

Last but surely not least, ado-file code written in the matrix language
with explicit subscript references is slow.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 3 / 40

Mata in Stata Stata’s traditional matrix commands

Mata circumvents the limitations of Stata’s traditional matrix
commands. Stata matrices must obey the maximum matsize: 800
rows or columns in Intercooled Stata. Thus, code relying on Stata
matrices is fragile. Stata’s matrix language does contain commands
such as matrix accum which can build a cross-product matrix from
variables of any length, but for many applications the limitation of
matsize is binding.

Even in Stata/SE with the possibility of a much larger matsize,
Stata’s matrices have another drawback. Large matrices consume
large amounts of memory, and an operation that converts Stata
variables into a matrix or vice versa will require twice the memory
needed for that set of variables.

Last but surely not least, ado-file code written in the matrix language
with explicit subscript references is slow.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 3 / 40

Mata in Stata Stata’s traditional matrix commands

The Mata programming language can sidestep these memory issues
by creating matrices with contents that refer directly to Stata
variables—no matter how many variables and observations may be
referenced. These virtual matrices, or views, have minimal overhead in
terms of memory consumption irregardless of their size.

Unlike some matrix programming languages, Mata matrices can
contain either numeric elements or string elements. A single matrix
may not mix those elements, but it may be declared generically to hold
either type of data. This implies that Mata can be used productively in
a list processing environment as well as in a numeric context. Indeed,
a command such as Bill Gould’s adoupdate is written almost
completely in Mata.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 4 / 40

Mata in Stata Stata’s traditional matrix commands

The Mata programming language can sidestep these memory issues
by creating matrices with contents that refer directly to Stata
variables—no matter how many variables and observations may be
referenced. These virtual matrices, or views, have minimal overhead in
terms of memory consumption irregardless of their size.

Unlike some matrix programming languages, Mata matrices can
contain either numeric elements or string elements. A single matrix
may not mix those elements, but it may be declared generically to hold
either type of data. This implies that Mata can be used productively in
a list processing environment as well as in a numeric context. Indeed,
a command such as Bill Gould’s adoupdate is written almost
completely in Mata.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 4 / 40

Mata in Stata Focus of the talk

Mata can be used very productively—like other matrix programming
languages—in an interactive environment. Just entering mata at the
Stata command dot-prompt puts you into the Mata environment, with
the colon prompt. To exit Mata and return to Stata, enter end.
However, the contents of your Mata environment will still exist for the
remainder of your interactive Stata session. You may enter Mata again
and take up where you left off.

In this presentation, we will not focus on interactive Mata use, but
rather on the way in which Mata can be used as a valuable adjunct to
Stata’s ado-file language. Its advantages arise in two contexts: where
computations may be done more efficiently in Mata due to its compiled
bytecode, and where the algorithm you wish to implement already
exists in matrix-language form. In many cases both of those rationales
will make Mata an ideal solution to your programming problem.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 5 / 40

Mata in Stata Focus of the talk

Mata can be used very productively—like other matrix programming
languages—in an interactive environment. Just entering mata at the
Stata command dot-prompt puts you into the Mata environment, with
the colon prompt. To exit Mata and return to Stata, enter end.
However, the contents of your Mata environment will still exist for the
remainder of your interactive Stata session. You may enter Mata again
and take up where you left off.

In this presentation, we will not focus on interactive Mata use, but
rather on the way in which Mata can be used as a valuable adjunct to
Stata’s ado-file language. Its advantages arise in two contexts: where
computations may be done more efficiently in Mata due to its compiled
bytecode, and where the algorithm you wish to implement already
exists in matrix-language form. In many cases both of those rationales
will make Mata an ideal solution to your programming problem.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 5 / 40

Mata in Stata Advantages of Mata

In a pure matrix programming language, you must handle all of the
housekeeping details involved with data organization, transformation
and selection. In contrast, if you write an ado-file that calls one or more
Mata functions, the ado-file will handle those housekeeping details
with the convenience features of the syntax and marksample
statements of the regular ado-file language. When the housekeeping
chores are completed, the resulting variables can be passed on to
Mata for processing.

Mata can access Stata variables, local and global macros, scalars and
matrices, and modify the contents of those objects as needed. If
Mata’s view matrices are used, alterations to the matrix within Mata
modifies the Stata variables that comprise the view.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 6 / 40

Mata in Stata Advantages of Mata

In a pure matrix programming language, you must handle all of the
housekeeping details involved with data organization, transformation
and selection. In contrast, if you write an ado-file that calls one or more
Mata functions, the ado-file will handle those housekeeping details
with the convenience features of the syntax and marksample
statements of the regular ado-file language. When the housekeeping
chores are completed, the resulting variables can be passed on to
Mata for processing.

Mata can access Stata variables, local and global macros, scalars and
matrices, and modify the contents of those objects as needed. If
Mata’s view matrices are used, alterations to the matrix within Mata
modifies the Stata variables that comprise the view.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 6 / 40

Mata in Stata Mata language elements

To understand Mata syntax, we present several of its operators. The
comma is the column-join operator, so

a = (1, 2, 3)

creates a three-element row vector. The backslash is the row-join
operator, so

b = (4 \ 5 \ 6)

creates a three-element column vector, while

c = (1, 2, 3 \ 4, 5, 6 \ 7, 8, 9)

creates a 3× 3 matrix.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 7 / 40

Mata in Stata Mata language operators

The prime (or apostrophe) is the transpose operator, so

d = (1 \ 2 \ 3)’

is a row vector. The comma and backslash operators can be used on
vectors and matrices as well as scalars, so

e = a, b’

will produce a six-element row vector, and

f = a’ \ b

a six-element column vector. Matrix elements can be real or complex,
so 2 - 3 i refers to a complex number 2− 3×

√
−1.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 8 / 40

Mata in Stata Mata language operators

The standard algebraic operators plus, minus and multiply (*) work on
scalars or matrices:

g = a’ + b
h = a * b
j = b * a

In this example h will be the dot product of vectors a, b while j is
their outer product.

Stata’s algebraic operators (including the slash for division) also can be
used in element-by-element computations when preceded by a colon:

k = a’ :* b

will produce the three-element column vector, with elements as the
product of the respective elements.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 9 / 40

Mata in Stata Mata language operators

The standard algebraic operators plus, minus and multiply (*) work on
scalars or matrices:

g = a’ + b
h = a * b
j = b * a

In this example h will be the dot product of vectors a, b while j is
their outer product.

Stata’s algebraic operators (including the slash for division) also can be
used in element-by-element computations when preceded by a colon:

k = a’ :* b

will produce the three-element column vector, with elements as the
product of the respective elements.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 9 / 40

Mata in Stata Mata language operators

Mata’s colon operator is very powerful, in that it will work on
nonconformable objects. For example:

a = (1, 2, 3)
c = (1, 2, 3 \ 4, 5, 6 \ 7, 8, 9)
m = a :+ c
n = c :/ a

adds the row vector a to each row of c to form m, and divides each row
of c by the corresponding elements of a to form n.

Stata’s scalar functions will also operate on elements of matrices:

d = sqrt(c)

will take the element-by-element square root, returning missing values
where appropriate.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 10 / 40

Mata in Stata Mata language operators

Mata’s colon operator is very powerful, in that it will work on
nonconformable objects. For example:

a = (1, 2, 3)
c = (1, 2, 3 \ 4, 5, 6 \ 7, 8, 9)
m = a :+ c
n = c :/ a

adds the row vector a to each row of c to form m, and divides each row
of c by the corresponding elements of a to form n.

Stata’s scalar functions will also operate on elements of matrices:

d = sqrt(c)

will take the element-by-element square root, returning missing values
where appropriate.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 10 / 40

Mata in Stata Mata logical operators

As in Stata, the equality logical operators are a == b and a != b.
They will work whether or not a and b are conformable or even of the
same type: a could be a vector and b a matrix. They return 0 or 1.

Unary not ! returns 1 if a scalar equals zero, 0 otherwise, and may be
applied in a vector or matrix context, returning a vector or matrix
of 0, 1.

The remaining logical comparison operators (>, >=, <, <=) can
only be used on objects that are conformable and of the same general
type (numeric or string). They return 0 or 1.

The logical and (&) and or (|) operators, as in Stata, can only be
applied to real scalars.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 11 / 40

Mata in Stata Mata logical operators

As in Stata, the equality logical operators are a == b and a != b.
They will work whether or not a and b are conformable or even of the
same type: a could be a vector and b a matrix. They return 0 or 1.

Unary not ! returns 1 if a scalar equals zero, 0 otherwise, and may be
applied in a vector or matrix context, returning a vector or matrix
of 0, 1.

The remaining logical comparison operators (>, >=, <, <=) can
only be used on objects that are conformable and of the same general
type (numeric or string). They return 0 or 1.

The logical and (&) and or (|) operators, as in Stata, can only be
applied to real scalars.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 11 / 40

Mata in Stata Mata logical operators

As in Stata, the equality logical operators are a == b and a != b.
They will work whether or not a and b are conformable or even of the
same type: a could be a vector and b a matrix. They return 0 or 1.

Unary not ! returns 1 if a scalar equals zero, 0 otherwise, and may be
applied in a vector or matrix context, returning a vector or matrix
of 0, 1.

The remaining logical comparison operators (>, >=, <, <=) can
only be used on objects that are conformable and of the same general
type (numeric or string). They return 0 or 1.

The logical and (&) and or (|) operators, as in Stata, can only be
applied to real scalars.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 11 / 40

Mata in Stata Mata logical operators

As in Stata, the equality logical operators are a == b and a != b.
They will work whether or not a and b are conformable or even of the
same type: a could be a vector and b a matrix. They return 0 or 1.

Unary not ! returns 1 if a scalar equals zero, 0 otherwise, and may be
applied in a vector or matrix context, returning a vector or matrix
of 0, 1.

The remaining logical comparison operators (>, >=, <, <=) can
only be used on objects that are conformable and of the same general
type (numeric or string). They return 0 or 1.

The logical and (&) and or (|) operators, as in Stata, can only be
applied to real scalars.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 11 / 40

Mata in Stata Mata subscripts

Subscripts in Mata utilize square brackets, and may appear on either
the left or right of an algebraic expression. There are two forms: list
subscripts and range subscripts.

With list subscripts, you can reference a single element of an array as
x[i,j]. But i or j can also be a vector: x[i,jvec], where jvec=
(4,6,8) will reference row i and those three columns of x. Missing
values (dots) will reference all rows or columns, so x[i,.] or x[i,]
extracts row i, and x[.,.] or x[,] references the whole matrix.

You may also use range operators to avoid listing each consecutive
element: x[(1..4),.] and x[(1::4),.] will both reference the
first four rows of x. The double-dot range creates a row vector, while
the double-colon range creates a column vector. Either may be used in
a subscript expression. Ranges may also decrement, so
x[(3::1),.] returns those rows in reverse order.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 12 / 40

Mata in Stata Mata subscripts

Subscripts in Mata utilize square brackets, and may appear on either
the left or right of an algebraic expression. There are two forms: list
subscripts and range subscripts.

With list subscripts, you can reference a single element of an array as
x[i,j]. But i or j can also be a vector: x[i,jvec], where jvec=
(4,6,8) will reference row i and those three columns of x. Missing
values (dots) will reference all rows or columns, so x[i,.] or x[i,]
extracts row i, and x[.,.] or x[,] references the whole matrix.

You may also use range operators to avoid listing each consecutive
element: x[(1..4),.] and x[(1::4),.] will both reference the
first four rows of x. The double-dot range creates a row vector, while
the double-colon range creates a column vector. Either may be used in
a subscript expression. Ranges may also decrement, so
x[(3::1),.] returns those rows in reverse order.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 12 / 40

Mata in Stata Mata subscripts

Subscripts in Mata utilize square brackets, and may appear on either
the left or right of an algebraic expression. There are two forms: list
subscripts and range subscripts.

With list subscripts, you can reference a single element of an array as
x[i,j]. But i or j can also be a vector: x[i,jvec], where jvec=
(4,6,8) will reference row i and those three columns of x. Missing
values (dots) will reference all rows or columns, so x[i,.] or x[i,]
extracts row i, and x[.,.] or x[,] references the whole matrix.

You may also use range operators to avoid listing each consecutive
element: x[(1..4),.] and x[(1::4),.] will both reference the
first four rows of x. The double-dot range creates a row vector, while
the double-colon range creates a column vector. Either may be used in
a subscript expression. Ranges may also decrement, so
x[(3::1),.] returns those rows in reverse order.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 12 / 40

Mata in Stata Mata subscripts

Range subscripts use the notation [| |]. They can reference single
elements of matrices, but are not useful for that. More useful is the
ability to say x[| i,j \ m,n |], which creates a submatrix starting
at x[i,j] and ending at x[m,n]. The arguments may be specified as
missing (dot), so x[| 1,2 \ 4,. |] will specify the submatrix
ending in the last column and x[| 2,2 \ .,. |] will discard the
first row and column of x. They also may be used on the left hand side
of an expression, or to extract a submatrix:
v = invsym(xx)[| 2,2 \ .,. |] will discard the first row and
column of the inverse of xx.

You need not use range subscripts, as even the specification of a
submatrix can be handled with list subscripts and range operators, but
they are more convenient for submatrix extraction (and faster in terms
of execution time).

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 13 / 40

Mata in Stata Mata subscripts

Range subscripts use the notation [| |]. They can reference single
elements of matrices, but are not useful for that. More useful is the
ability to say x[| i,j \ m,n |], which creates a submatrix starting
at x[i,j] and ending at x[m,n]. The arguments may be specified as
missing (dot), so x[| 1,2 \ 4,. |] will specify the submatrix
ending in the last column and x[| 2,2 \ .,. |] will discard the
first row and column of x. They also may be used on the left hand side
of an expression, or to extract a submatrix:
v = invsym(xx)[| 2,2 \ .,. |] will discard the first row and
column of the inverse of xx.

You need not use range subscripts, as even the specification of a
submatrix can be handled with list subscripts and range operators, but
they are more convenient for submatrix extraction (and faster in terms
of execution time).

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 13 / 40

Mata in Stata Mata loop functions

Several constructs support loops in Mata. As in any matrix language,
explicit loops should not be used where matrix operations can be used.
The most common loop construct resembles that of C:

for (exp1; exp2; exp3) {
statements

}

where the three exps define the lower limit, upper limit and increment
of the loop. For instance:

for (i=1; i<=10; i++) {
printf("i=%g \n", i)

}

If a single statement is to be executed, it may appear on the for
statement.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 14 / 40

Mata in Stata Mata loop functions

You may also use do, which follows the syntax

do {
statements

} while (exp)

which will execute the statements at least once.

Alternatively, you may use while:

while (exp) {
statements

}

which could be used, for example, to loop until convergence.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 15 / 40

Mata in Stata Mata loop functions

You may also use do, which follows the syntax

do {
statements

} while (exp)

which will execute the statements at least once.

Alternatively, you may use while:

while (exp) {
statements

}

which could be used, for example, to loop until convergence.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 15 / 40

Mata in Stata Mata conditional statements

To execute certain statements conditionally, you use if, else:

if (exp) statement

if (exp) statement1
else statement2

if (exp) {
statements1

}
else if {

statements2
}
else {

statements3
}

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 16 / 40

Mata in Stata Mata conditional statements

You may also use the conditional a ? b : c, where a is a real
scalar. If a evaluates to true (nonzero), the result is set to b, otherwise
c. For instance,

if (k == 0) dof = n-1
else dof = n-k

can be written as

dof = (k==0 ? n-1 : n-k)

The increment (++) and decrement (−−) operators can be used to
manage counter variables. The operator A # B produces the
Kronecker direct product of those objects.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 17 / 40

Mata in Stata Mata conditional statements

You may also use the conditional a ? b : c, where a is a real
scalar. If a evaluates to true (nonzero), the result is set to b, otherwise
c. For instance,

if (k == 0) dof = n-1
else dof = n-k

can be written as

dof = (k==0 ? n-1 : n-k)

The increment (++) and decrement (−−) operators can be used to
manage counter variables. The operator A # B produces the
Kronecker direct product of those objects.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 17 / 40

Mata in Stata Mata conditional statements

For compatibility with old-style Fortran, there is a goto statement:

label: statement
statements
if (exp) goto label

}

Although such a construct can be rewritten in terms of do:

do {
statements
} while (exp)

The goto statement is more useful when there are long-range
branches in a program being translated from old-style Fortran code.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 18 / 40

Mata in Stata A simple Mata function

We now consider a simple Mata function called from an ado-file.
Imagine that we did not have an easy way of computing the sum of the
elements of a Stata variable, and wanted to do so with Mata:

program varsum, rclass
version 9.2
syntax varname [if] [in]
marksample touse
mata: calcsum("‘varlist’", "‘touse’")
display as txt " sum (‘varlist’) = " ///

as res r(sum)
return scalar sum = r(sum)

end

This is the first part of the contents of varsum.ado. We define the
Mata calcsum function next.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 19 / 40

Mata in Stata A simple Mata function

We then add the Mata function definition to varsum.ado:

version 9.2
mata:
mata set matastrict on
void calcsum(string scalar varname, ///

string scalar touse)
{
real colvector x
st_view(x, ., varname, touse)
st_numscalar("r(sum)", colsum(x))

}
end

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 20 / 40

Mata in Stata A simple Mata function

Our varsum ado-code creates a Stata command, varsum, which
requires the name of a single Stata variable. You may specify if or in
conditions. The Mata function calcsum is called with two arguments:
the name of the variable and the name of the touse temporary
variable marking out valid observations. As we will see the Mata
function returns its results in a scalar, r(sum), which we print out and
return to Stata.

The Mata code as shown is strict: all objects must be defined. The
function is declared void as it does not return a result. A Mata
function could return a single result to Mata, but we want the result
back in Stata. The input arguments are declared as string scalar
as they are variable names. We create a view matrix, colvector x, as
the subset of varname for which touse==1. Mata’s colsum()
function computes the sum of those elements, and st_numscalar
returns it to Stata as r(sum).

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 21 / 40

Mata in Stata A simple Mata function

Our varsum ado-code creates a Stata command, varsum, which
requires the name of a single Stata variable. You may specify if or in
conditions. The Mata function calcsum is called with two arguments:
the name of the variable and the name of the touse temporary
variable marking out valid observations. As we will see the Mata
function returns its results in a scalar, r(sum), which we print out and
return to Stata.

The Mata code as shown is strict: all objects must be defined. The
function is declared void as it does not return a result. A Mata
function could return a single result to Mata, but we want the result
back in Stata. The input arguments are declared as string scalar
as they are variable names. We create a view matrix, colvector x, as
the subset of varname for which touse==1. Mata’s colsum()
function computes the sum of those elements, and st_numscalar
returns it to Stata as r(sum).

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 21 / 40

Mata in Stata A simple Mata function

This short example of Mata code uses two of the important
st_ functions: the Mata functions that permit Mata to access any object
(variable, local or global macro, scalar, matrix, label, etc.) in Stata.
These functions allow those objects to be read, but also to be created
(as is the scalar r(sum) in this example) or updated. This implies that
Mata can both read Stata variables (as in the example) and modify
their contents.

We consider a simple program that alters a set of Stata variables next.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 22 / 40

Mata in Stata A simple Mata function

program centervars, rclass
version 9.2
syntax varlist(numeric) [if] [in]
marksample touse
mata: centerv("‘varlist’", "‘touse’")

end
version 9.2
mata:
void centerv(string scalar varlist, ///

string scalar touse)
{
st_view(X=.,.,tokens(varlist),touse)
X[,] = X :- mean(X)

}
end

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 23 / 40

Mata in Stata A simple Mata function

The centervars.ado file contains a Stata command, centervars,
that takes a list of numeric variables. That list is passed to the Mata
function centerv along with touse, the temporary variable that
marks out the desired observations. The Mata function tokens()
extracts the variable names from varlist and places them in a string
rowvector, the form needed by st_view . The st_view function then
creates a view matrix, X, containing those variables and the specified
observations.

In this function, though, the view matrix allows us to both access the
variables’ contents, as stored in Mata matrix X, but also to modify
those contents. The colon operator subtracts the vector of column
means of X from the data. Using the X[,]= notation, the Stata
variables themselves are modified. When the Mata function returns to
Stata, the descriptive statistics of the variables in varlist will be altered.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 24 / 40

Mata in Stata A simple Mata function

The centervars.ado file contains a Stata command, centervars,
that takes a list of numeric variables. That list is passed to the Mata
function centerv along with touse, the temporary variable that
marks out the desired observations. The Mata function tokens()
extracts the variable names from varlist and places them in a string
rowvector, the form needed by st_view . The st_view function then
creates a view matrix, X, containing those variables and the specified
observations.

In this function, though, the view matrix allows us to both access the
variables’ contents, as stored in Mata matrix X, but also to modify
those contents. The colon operator subtracts the vector of column
means of X from the data. Using the X[,]= notation, the Stata
variables themselves are modified. When the Mata function returns to
Stata, the descriptive statistics of the variables in varlist will be altered.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 24 / 40

Mata in Stata A simple Mata function

The centervars command is somewhat dangerous in that it alters
the contents of existing variables without explicit mention (e.g., a
required replace option). A better approach would be to allow the
specification of a prefix such as c_ to create a set of new variables, or
a separate newvarlist of new variable names to store the modified
variables.

But the function illustrates the power of Mata: rather than writing a loop
in the ado-file language which operates on each variable, we may give
a single command to transform the entire set of variables, irregardless
of their number.

We now discuss the st_ functions and other sets of Mata functions
more thoroughly.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 25 / 40

Mata in Stata The st_ functions

In the previous examples we used st_view to access Stata variables
from within Mata, and st_numscalar to define the contents of a
Stata numeric scalar. These are two of a sizable number of
st_functions that permit interchange of information between the Stata
(st) and Mata environments.

First let us define the st_view function, as it is the most common
method of accessing Stata variables. Unlike most Mata functions, it
does not return a result. It takes three arguments: the name of the
view matrix to be created, the observations (rows) that it is to contain,
and the variables (columns). An optional fourth argument can specify
touse: an indicator variable specifying whether each observation is to
be included.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 26 / 40

Mata in Stata The st_ functions

In the previous examples we used st_view to access Stata variables
from within Mata, and st_numscalar to define the contents of a
Stata numeric scalar. These are two of a sizable number of
st_functions that permit interchange of information between the Stata
(st) and Mata environments.

First let us define the st_view function, as it is the most common
method of accessing Stata variables. Unlike most Mata functions, it
does not return a result. It takes three arguments: the name of the
view matrix to be created, the observations (rows) that it is to contain,
and the variables (columns). An optional fourth argument can specify
touse: an indicator variable specifying whether each observation is to
be included.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 26 / 40

Mata in Stata The st_ functions

Thus a Mata statement

st_view(Z=., ., .)

will create a view matrix of all observations and all variables in Stata’s
memory. The missing value (dot) specification indicates that all
observations and all variables are included. The syntax Z=. specifies
that the object is to be created as a void matrix, and then populated
with contents. As Z is defined as a real matrix, columns associated
with any string variables will contain all missing values. st_sview
creates a view matrix of string variables.

If we want to specify a subset of variables, we must define a string
vector containing their names (as the example in centervars.ado
using the tokens() function shows).

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 27 / 40

Mata in Stata The st_ functions

Thus a Mata statement

st_view(Z=., ., .)

will create a view matrix of all observations and all variables in Stata’s
memory. The missing value (dot) specification indicates that all
observations and all variables are included. The syntax Z=. specifies
that the object is to be created as a void matrix, and then populated
with contents. As Z is defined as a real matrix, columns associated
with any string variables will contain all missing values. st_sview
creates a view matrix of string variables.

If we want to specify a subset of variables, we must define a string
vector containing their names (as the example in centervars.ado
using the tokens() function shows).

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 27 / 40

Mata in Stata The st_ functions

As in centervars.ado, modifying the contents of a view matrix will
alter the original variables. Those variables were defined in Stata, so
altering their values will not change their data type. Although Stata’s
generate or replace commands will promote or cast a variable (for
instance, from int to real) as needed, centervars.ado will return
integer variables if applied to integer variables.

A good approach to this problem involves creating new variables of the
appropriate data type in Stata and forming two view matrices within
Mata: one that only accesses the original variables and a second that
maps into the new variables. This will also ensure that the original
variables are not altered by the Mata function. An example of this logic
is contained in hprescott.ado (findit hprescott).

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 28 / 40

Mata in Stata The st_ functions

As in centervars.ado, modifying the contents of a view matrix will
alter the original variables. Those variables were defined in Stata, so
altering their values will not change their data type. Although Stata’s
generate or replace commands will promote or cast a variable (for
instance, from int to real) as needed, centervars.ado will return
integer variables if applied to integer variables.

A good approach to this problem involves creating new variables of the
appropriate data type in Stata and forming two view matrices within
Mata: one that only accesses the original variables and a second that
maps into the new variables. This will also ensure that the original
variables are not altered by the Mata function. An example of this logic
is contained in hprescott.ado (findit hprescott).

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 28 / 40

Mata in Stata The st_ functions

An alternative to view matrices is provided by st_data and
st_sdata, which copy data from Stata variables into Mata matrices,
vectors or scalars. However, this operation duplicates the contents of
those variables in Mata, and requires at least twice as much memory
as consumed by the Stata variables (Mata does not have the full set of
1-, 2-, and 4-byte datatypes). Thus, although a view matrix can
reference any and all variables currently in Stata’s memory with
minimal overhead, a matrix created by st_data will consume
considerable memory (just as a matrix in Stata’s own matrix language
does).

As with st_view, dots may be used in st_data to specify all
observations or all variables, and an optional selectvar can mark out
desired observations. Otherwise, lists of variable names (or their
indices in the dataset) are used to indicate the desired variables.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 29 / 40

Mata in Stata The st_ functions

An alternative to view matrices is provided by st_data and
st_sdata, which copy data from Stata variables into Mata matrices,
vectors or scalars. However, this operation duplicates the contents of
those variables in Mata, and requires at least twice as much memory
as consumed by the Stata variables (Mata does not have the full set of
1-, 2-, and 4-byte datatypes). Thus, although a view matrix can
reference any and all variables currently in Stata’s memory with
minimal overhead, a matrix created by st_data will consume
considerable memory (just as a matrix in Stata’s own matrix language
does).

As with st_view, dots may be used in st_data to specify all
observations or all variables, and an optional selectvar can mark out
desired observations. Otherwise, lists of variable names (or their
indices in the dataset) are used to indicate the desired variables.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 29 / 40

Mata in Stata The st_ functions

We may also want to transfer other objects between the Stata and
Mata environments. Although local and global macros, scalars and
Stata matrices could be passed in the calling sequence to a Mata
function, the function can only return one item. In order to return a
number of objects to Stata—for instance, a list of macros, scalars and
matrices as commonly found in return list from an r-class
program—we use st_functions.

For local macros,

contents = st_local("macname")
st_local("macname", newvalue)

The first command will return the contents of Stata local macro
macname. The second command will create and populate that local
macro if it does not exist, or replace the contents if it does, with
newvalue.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 30 / 40

Mata in Stata The st_ functions

We may also want to transfer other objects between the Stata and
Mata environments. Although local and global macros, scalars and
Stata matrices could be passed in the calling sequence to a Mata
function, the function can only return one item. In order to return a
number of objects to Stata—for instance, a list of macros, scalars and
matrices as commonly found in return list from an r-class
program—we use st_functions.

For local macros,

contents = st_local("macname")
st_local("macname", newvalue)

The first command will return the contents of Stata local macro
macname. The second command will create and populate that local
macro if it does not exist, or replace the contents if it does, with
newvalue.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 30 / 40

Mata in Stata The st_ functions

Along the same lines, functions st_global, st_numscalar and
st_strscalar may be used to retrieve the contents, create, or
replace the contents of global macros, numeric scalars and string
scalars, respectively. Function st_matrix performs these operations
on Stata matrices.

All of these functions can be used to obtain the contents, create or
replace the results in r() or e(): Stata’s return list and
ereturn list. Functions st_rclear and st_eclear can be used
to delete all entries in those lists. Read-only access to the c()
objects is also available.

The stata() function can execute a Stata command from within
Mata.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 31 / 40

Mata in Stata The st_ functions

Along the same lines, functions st_global, st_numscalar and
st_strscalar may be used to retrieve the contents, create, or
replace the contents of global macros, numeric scalars and string
scalars, respectively. Function st_matrix performs these operations
on Stata matrices.

All of these functions can be used to obtain the contents, create or
replace the results in r() or e(): Stata’s return list and
ereturn list. Functions st_rclear and st_eclear can be used
to delete all entries in those lists. Read-only access to the c()
objects is also available.

The stata() function can execute a Stata command from within
Mata.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 31 / 40

Mata in Stata Mata matrix functions

Beyond the Stata interface functions, Mata contains a broad set of
functions for matrix handling, mathematics and statistics, utility
features, string handling and input-output.

Standard matrices can be defined with I(), e() (for unit vectors)
and J() (for constant matrices) with random matrices computed with
uniform().

Matrix functions include trace(), det(), norm(), cond() and
rank. A variety of functions provide decompositions, inversion and
solution of linear systems, including Cholesky, LU, QR and SVD
decompositions and solvers. The entire set of EISPACK/LAPACK
routines are available for eigensystem analysis. Standard scalar
functions are available and can be applied to vectors and matrices.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 32 / 40

Mata in Stata Mata matrix functions

Beyond the Stata interface functions, Mata contains a broad set of
functions for matrix handling, mathematics and statistics, utility
features, string handling and input-output.

Standard matrices can be defined with I(), e() (for unit vectors)
and J() (for constant matrices) with random matrices computed with
uniform().

Matrix functions include trace(), det(), norm(), cond() and
rank. A variety of functions provide decompositions, inversion and
solution of linear systems, including Cholesky, LU, QR and SVD
decompositions and solvers. The entire set of EISPACK/LAPACK
routines are available for eigensystem analysis. Standard scalar
functions are available and can be applied to vectors and matrices.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 32 / 40

Mata in Stata Mata matrix functions

Beyond the Stata interface functions, Mata contains a broad set of
functions for matrix handling, mathematics and statistics, utility
features, string handling and input-output.

Standard matrices can be defined with I(), e() (for unit vectors)
and J() (for constant matrices) with random matrices computed with
uniform().

Matrix functions include trace(), det(), norm(), cond() and
rank. A variety of functions provide decompositions, inversion and
solution of linear systems, including Cholesky, LU, QR and SVD
decompositions and solvers. The entire set of EISPACK/LAPACK
routines are available for eigensystem analysis. Standard scalar
functions are available and can be applied to vectors and matrices.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 32 / 40

Mata in Stata Mata utility functions

Matrix utility functions include rows(), cols(), length() (of a
vector), issymmetric(), isdiagonal() and missing()
(nonmissing()) to count (non-)missing values. You can also use
rowmissing() and colmissing to analyze missingness.

A variety of row-wise and column-wise functions are available:
rowmin() and colmin() and equivalent ...max, rowsum(),
colsum(), and overall sum(). Routines for evaluating
convergence include reldif(), mreldif()
and mreldifsym() (difference from symmetry).

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 33 / 40

Mata in Stata Mata utility functions

Matrix utility functions include rows(), cols(), length() (of a
vector), issymmetric(), isdiagonal() and missing()
(nonmissing()) to count (non-)missing values. You can also use
rowmissing() and colmissing to analyze missingness.

A variety of row-wise and column-wise functions are available:
rowmin() and colmin() and equivalent ...max, rowsum(),
colsum(), and overall sum(). Routines for evaluating
convergence include reldif(), mreldif()
and mreldifsym() (difference from symmetry).

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 33 / 40

Mata in Stata Mata statistical and mathematical functions

Statistical functions include mean(), variance() and
correlation, as well as utility routines such as cross() and
crossdev() to compute cross-products. Distribution-specific
functions include, among many others, lnfactorial(), lngamma(
), normalden(), normal(), invnormal(), binomial().

For the χ2, t , F and β distributions both PDFs and CDFs are available
for the distribution and their inverses. Noncentral χ2, F and β are also
handled. The logit() and invlogit() functions are available
for analysis of the logistic distribution.

Mathematical functions also are provided to handle Fourier transforms,
creation of power spectra, cubic splines and polynomial arithmetic.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 34 / 40

Mata in Stata Mata statistical and mathematical functions

Statistical functions include mean(), variance() and
correlation, as well as utility routines such as cross() and
crossdev() to compute cross-products. Distribution-specific
functions include, among many others, lnfactorial(), lngamma(
), normalden(), normal(), invnormal(), binomial().

For the χ2, t , F and β distributions both PDFs and CDFs are available
for the distribution and their inverses. Noncentral χ2, F and β are also
handled. The logit() and invlogit() functions are available
for analysis of the logistic distribution.

Mathematical functions also are provided to handle Fourier transforms,
creation of power spectra, cubic splines and polynomial arithmetic.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 34 / 40

Mata in Stata Mata string and I/O functions

Mata’s string functions largely parallel those available in Stata. As in
Stata, the + operator is overloaded to denote string concatenation. In
addition, the * operator can be used to duplicate strings.

A full set of input-output functions make Mata an easier environment to
perform arbitrary I/O than Stata itself. Functions are available to query
the local filesystem, create, change or remove directories and work
with paths embedded in filenames or Stata’s ADOPATH settings. You
may read and write both ASCII and binary files as well as matrices: the
latter a facility lacking from official Stata. You may also direct output to
the Results window or read input from the Command window.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 35 / 40

Mata in Stata Mata string and I/O functions

Mata’s string functions largely parallel those available in Stata. As in
Stata, the + operator is overloaded to denote string concatenation. In
addition, the * operator can be used to duplicate strings.

A full set of input-output functions make Mata an easier environment to
perform arbitrary I/O than Stata itself. Functions are available to query
the local filesystem, create, change or remove directories and work
with paths embedded in filenames or Stata’s ADOPATH settings. You
may read and write both ASCII and binary files as well as matrices: the
latter a facility lacking from official Stata. You may also direct output to
the Results window or read input from the Command window.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 35 / 40

Mata in Stata A more elaborate Mata example

We present an example of constructing a Stata command that uses
Mata to achieve a useful task. We often have timeseries data at a
higher frequency (e.g., monthly) and want to work with it at a lower
frequency (e.g., quarterly or annual). We may use Stata’s collapse
command to achieve this, or the author’s tscollap. But both of those
solutions destroy the current dataset. In some cases—for instance, for
graphical or tabular presentation—we may want to retain the original
(high-frequency) data and add the lower-frequency series to the
dataset. Note that the computation of these series could also be
handled with the egen group() function, but that would intersperse
the lower-frequency data with missing values.

We design a Stata command, avgper, which takes a single variable
and optional if or in conditions along with a mandatory option
per(): the number of periods to be averaged into a lower-frequency
series. We could handle multiple variables or alternative
transformations (e.g., sums over the periods) with an expanded
version of this routine.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 36 / 40

Mata in Stata A more elaborate Mata example

We present an example of constructing a Stata command that uses
Mata to achieve a useful task. We often have timeseries data at a
higher frequency (e.g., monthly) and want to work with it at a lower
frequency (e.g., quarterly or annual). We may use Stata’s collapse
command to achieve this, or the author’s tscollap. But both of those
solutions destroy the current dataset. In some cases—for instance, for
graphical or tabular presentation—we may want to retain the original
(high-frequency) data and add the lower-frequency series to the
dataset. Note that the computation of these series could also be
handled with the egen group() function, but that would intersperse
the lower-frequency data with missing values.

We design a Stata command, avgper, which takes a single variable
and optional if or in conditions along with a mandatory option
per(): the number of periods to be averaged into a lower-frequency
series. We could handle multiple variables or alternative
transformations (e.g., sums over the periods) with an expanded
version of this routine.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 36 / 40

Mata in Stata A more elaborate Mata example

The Stata ado-file defines the program, then validates the per()
argument. We require that the number of high-frequency observations
is a multiple of per.

program avgper, rclass
version 9.2
syntax varlist(max=1 numeric) [if] [in], per(integer)
marksample touse
qui summ ‘varlist’ if ‘touse’

* validate per versus selected sample
if ‘per’ <= 0 | ‘per’ >= ‘r(N)’ {
display as error "per must be >0 and <nobs."
error 198
}
if mod(‘r(N)’,‘per’ != 0) {
display as error "nobs must be a multiple of per."
error 198
}

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 37 / 40

Mata in Stata A more elaborate Mata example

We attempt to create a new variable named vnameAn, where vname is
the specified variable and n is the value of per(). If that variable
name is already in use, the routine exits with error. The variable is
created with missing values, as it is only a placeholder. With successful
validation, we pass the arguments to the Mata function avgper.

* validate the new varname
local newvar = "‘varlist’"+"A"+string(‘per’)
qui gen ‘newvar’ = .

* pass the varname and newvarname to mata
mata: avgper("‘varlist’","‘newvar’", ///

‘per’,"‘touse’")
end

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 38 / 40

Mata in Stata A more elaborate Mata example

The Mata function to achieve this task is quite succinct, requiring that
we effectively reshape the data into a matrix with per columns using
colshape(), then scale by 1/per to create averages:

version 9.2
mata:
void avgper(string scalar vname,
string scalar newvname,

real scalar per,
string scalar touse)

{
st_view(v1=.,.,vname,touse)
st_view(v2=.,.,newvname)
v3 = colshape(v1’,per) * J(per,1,1/per)
v2[(1::rows(v3)),] = v3
}
end

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 39 / 40

Mata in Stata A more elaborate Mata example

Note that we make use of view matrices to access the contents of
vname—the existing variable name specified in the avgper
command—and to access newvname in Mata, which is our
newly-created ‘newvar’ in the Stata code. The colshape function
creates a matrix which is q × per , where q is the number of
low-frequency observations to be created. Postmultiplying that matrix
by a per–element column vector of 1/per produces the desired result
of a q-element column vector. That object—v3 in Mata—is then written
to the first q rows of view matrix v2, which corresponds to the Stata
variable ‘newvar’.

By using Mata and a simple matrix expression, we have considerably
simplified the computation of the lower-frequency series, and may
apply the routine to any combination of data frequencies (e.g.,
business-daily data to weekly) without concern for Stata’s support of a
particular timeseries frequency.

Christopher F Baum (Boston College FMRC) Mata in Stata January 2007 40 / 40

	Mata in Stata
	Introduction
	Stata's traditional matrix commands
	Focus of the talk
	Advantages of Mata
	Mata language elements
	Mata language operators
	Mata logical operators
	Mata subscripts
	Mata loop functions
	Mata conditional statements
	A simple Mata function
	The st_ functions
	Mata matrix functions
	Mata utility functions
	Mata statistical and mathematical functions
	Mata string and I/O functions
	A more elaborate Mata example

