
Why should you become a Stata programmer?

Christopher F Baum

Boston College and DIW Berlin

May 2008

Christopher F Baum (Boston College) Why become a Stata programmer? 1 / 55

Should you become a Stata programmer? Introduction

Introduction

In this talk, I will discuss some ways in which you can use Stata more
effectively in your work, and present some examples of recent
enhancements to Stata that facilitate that goal.

I first discuss the several contexts of what it means to be a Stata
programmer. Then, given your role as a user of Stata rather than a
developer, we consider your motivation for achieving proficiency in
each of those contexts, and give examples of how such proficiency
may be valuable.

I hope to convince you, along the lines of a talk I gave at UKSUG’2005,
that “a little bit of Stata programming goes a long way” toward making
your use of Stata more efficient and enjoyable.

Christopher F Baum (Boston College) Why become a Stata programmer? 2 / 55

Should you become a Stata programmer? Introduction

Introduction

In this talk, I will discuss some ways in which you can use Stata more
effectively in your work, and present some examples of recent
enhancements to Stata that facilitate that goal.

I first discuss the several contexts of what it means to be a Stata
programmer. Then, given your role as a user of Stata rather than a
developer, we consider your motivation for achieving proficiency in
each of those contexts, and give examples of how such proficiency
may be valuable.

I hope to convince you, along the lines of a talk I gave at UKSUG’2005,
that “a little bit of Stata programming goes a long way” toward making
your use of Stata more efficient and enjoyable.

Christopher F Baum (Boston College) Why become a Stata programmer? 2 / 55

Should you become a Stata programmer? Introduction

Introduction

In this talk, I will discuss some ways in which you can use Stata more
effectively in your work, and present some examples of recent
enhancements to Stata that facilitate that goal.

I first discuss the several contexts of what it means to be a Stata
programmer. Then, given your role as a user of Stata rather than a
developer, we consider your motivation for achieving proficiency in
each of those contexts, and give examples of how such proficiency
may be valuable.

I hope to convince you, along the lines of a talk I gave at UKSUG’2005,
that “a little bit of Stata programming goes a long way” toward making
your use of Stata more efficient and enjoyable.

Christopher F Baum (Boston College) Why become a Stata programmer? 2 / 55

Should you become a Stata programmer? Introduction

First, some nomenclature related to programming:
You should consider yourself a Stata programmer if you write
do-files: sequences of Stata commands which you execute with
the do command or by double-clicking on the file.
You might also write what Stata formally defines as a program: a
set of Stata commands that includes the program statement. A
Stata program, stored in an ado-file, defines a new Stata
command.
As of version 9, you may use Stata’s new programming language,
Mata, to write routines in that language that are called by ado-files.

Any of these tasks involve Stata programming.

Christopher F Baum (Boston College) Why become a Stata programmer? 3 / 55

Should you become a Stata programmer? Introduction

First, some nomenclature related to programming:
You should consider yourself a Stata programmer if you write
do-files: sequences of Stata commands which you execute with
the do command or by double-clicking on the file.
You might also write what Stata formally defines as a program: a
set of Stata commands that includes the program statement. A
Stata program, stored in an ado-file, defines a new Stata
command.
As of version 9, you may use Stata’s new programming language,
Mata, to write routines in that language that are called by ado-files.

Any of these tasks involve Stata programming.

Christopher F Baum (Boston College) Why become a Stata programmer? 3 / 55

Should you become a Stata programmer? Introduction

First, some nomenclature related to programming:
You should consider yourself a Stata programmer if you write
do-files: sequences of Stata commands which you execute with
the do command or by double-clicking on the file.
You might also write what Stata formally defines as a program: a
set of Stata commands that includes the program statement. A
Stata program, stored in an ado-file, defines a new Stata
command.
As of version 9, you may use Stata’s new programming language,
Mata, to write routines in that language that are called by ado-files.

Any of these tasks involve Stata programming.

Christopher F Baum (Boston College) Why become a Stata programmer? 3 / 55

Should you become a Stata programmer? Introduction

First, some nomenclature related to programming:
You should consider yourself a Stata programmer if you write
do-files: sequences of Stata commands which you execute with
the do command or by double-clicking on the file.
You might also write what Stata formally defines as a program: a
set of Stata commands that includes the program statement. A
Stata program, stored in an ado-file, defines a new Stata
command.
As of version 9, you may use Stata’s new programming language,
Mata, to write routines in that language that are called by ado-files.

Any of these tasks involve Stata programming.

Christopher F Baum (Boston College) Why become a Stata programmer? 3 / 55

Should you become a Stata programmer? Introduction

First, some nomenclature related to programming:
You should consider yourself a Stata programmer if you write
do-files: sequences of Stata commands which you execute with
the do command or by double-clicking on the file.
You might also write what Stata formally defines as a program: a
set of Stata commands that includes the program statement. A
Stata program, stored in an ado-file, defines a new Stata
command.
As of version 9, you may use Stata’s new programming language,
Mata, to write routines in that language that are called by ado-files.

Any of these tasks involve Stata programming.

Christopher F Baum (Boston College) Why become a Stata programmer? 3 / 55

Should you become a Stata programmer? Introduction

With that set of definitions in mind, we must deal with the why: why
should you become a Stata programmer? After answering that
essential question, we take up some of the aspects of how: how you
can become a more efficient user of Stata by making use of
programming techniques, be they simple or complex.

Christopher F Baum (Boston College) Why become a Stata programmer? 4 / 55

Should you become a Stata programmer? Introduction

Using any computer program or language is all about efficiency: not
computational efficiency as much as human efficiency. You want the
computer to do the work that can be routinely automated, allowing you
to make more efficient use of your time and reducing human errors.
Computers are excellent at performing repetitive tasks; humans are
not.

One of the strongest rationales for learning how to use programming
techniques in Stata is the potential to shift more of the repetitive
burden of data management, statistical analysis and the production of
graphics to the computer.

Let’s consider several specific advantages of using Stata programming
techniques in the three contexts enumerated above.

Christopher F Baum (Boston College) Why become a Stata programmer? 5 / 55

Should you become a Stata programmer? Introduction

Using any computer program or language is all about efficiency: not
computational efficiency as much as human efficiency. You want the
computer to do the work that can be routinely automated, allowing you
to make more efficient use of your time and reducing human errors.
Computers are excellent at performing repetitive tasks; humans are
not.

One of the strongest rationales for learning how to use programming
techniques in Stata is the potential to shift more of the repetitive
burden of data management, statistical analysis and the production of
graphics to the computer.

Let’s consider several specific advantages of using Stata programming
techniques in the three contexts enumerated above.

Christopher F Baum (Boston College) Why become a Stata programmer? 5 / 55

Should you become a Stata programmer? Introduction

Using any computer program or language is all about efficiency: not
computational efficiency as much as human efficiency. You want the
computer to do the work that can be routinely automated, allowing you
to make more efficient use of your time and reducing human errors.
Computers are excellent at performing repetitive tasks; humans are
not.

One of the strongest rationales for learning how to use programming
techniques in Stata is the potential to shift more of the repetitive
burden of data management, statistical analysis and the production of
graphics to the computer.

Let’s consider several specific advantages of using Stata programming
techniques in the three contexts enumerated above.

Christopher F Baum (Boston College) Why become a Stata programmer? 5 / 55

Should you become a Stata programmer? Using do-files

Context 1: do-file programming

Using a do-file to automate a specific data management or statistical
task leads to reproducible research and the ability to document the
empirical research process. This reduces the effort needed to perform
a similar task at a later point, or to document the specific steps you
followed for your co-workers or supervisor.

Ideally, your entire research project should be defined by a set of
do-files which execute every step from input of the raw data to
production of the final tables and graphs. As a do-file can call another
do-file (and so on), a hierarchy of do-files can be used to handle a
quite complex project.

Christopher F Baum (Boston College) Why become a Stata programmer? 6 / 55

Should you become a Stata programmer? Using do-files

Context 1: do-file programming

Using a do-file to automate a specific data management or statistical
task leads to reproducible research and the ability to document the
empirical research process. This reduces the effort needed to perform
a similar task at a later point, or to document the specific steps you
followed for your co-workers or supervisor.

Ideally, your entire research project should be defined by a set of
do-files which execute every step from input of the raw data to
production of the final tables and graphs. As a do-file can call another
do-file (and so on), a hierarchy of do-files can be used to handle a
quite complex project.

Christopher F Baum (Boston College) Why become a Stata programmer? 6 / 55

Should you become a Stata programmer? Using do-files

The beauty of this approach is flexibility: if you find an error in an
earlier stage of the project, you need only modify the code and rerun
that do-file and those following to bring the project up to date. For
instance, an academic researcher may need to respond to a review of
her paper—submitted months ago to an academic journal—by revising
the specification of variables in a set of estimated models and
estimating new statistical results. If all of the steps producing the final
results are documented by a set of do-files, that task becomes
straightforward.

I argue that all serious users of Stata should gain some facility with
do-files and the Stata commands that support repetitive use of
commands. A few hours’ investment should save days of weeks of
time over the course of a sizable research project.

Christopher F Baum (Boston College) Why become a Stata programmer? 7 / 55

Should you become a Stata programmer? Using do-files

The beauty of this approach is flexibility: if you find an error in an
earlier stage of the project, you need only modify the code and rerun
that do-file and those following to bring the project up to date. For
instance, an academic researcher may need to respond to a review of
her paper—submitted months ago to an academic journal—by revising
the specification of variables in a set of estimated models and
estimating new statistical results. If all of the steps producing the final
results are documented by a set of do-files, that task becomes
straightforward.

I argue that all serious users of Stata should gain some facility with
do-files and the Stata commands that support repetitive use of
commands. A few hours’ investment should save days of weeks of
time over the course of a sizable research project.

Christopher F Baum (Boston College) Why become a Stata programmer? 7 / 55

Should you become a Stata programmer? Using do-files

That advice does not imply that Stata’s interactive capabilities should
be shunned. Stata is a powerful and effective tool for exploratory data
analysis and ad hoc queries about your data. But data management
tasks and the statistical analyses leading to tabulated results should
not be performed with “point-and-click” tools which leave you without
an audit trail of the steps you have taken.

Responsible research involves reproducibility, and “point-and-click”
tools do not promote reproducibility. For that reason, I counsel
researchers to move their data into Stata (from a spreadsheet
environment, for example) as early as possible in the process, and
perform all transformations, data cleaning, etc. with Stata’s do-file
language. This can save a great deal of time when mistakes are
detected in the raw data, or when they are revised.

Christopher F Baum (Boston College) Why become a Stata programmer? 8 / 55

Should you become a Stata programmer? Using do-files

That advice does not imply that Stata’s interactive capabilities should
be shunned. Stata is a powerful and effective tool for exploratory data
analysis and ad hoc queries about your data. But data management
tasks and the statistical analyses leading to tabulated results should
not be performed with “point-and-click” tools which leave you without
an audit trail of the steps you have taken.

Responsible research involves reproducibility, and “point-and-click”
tools do not promote reproducibility. For that reason, I counsel
researchers to move their data into Stata (from a spreadsheet
environment, for example) as early as possible in the process, and
perform all transformations, data cleaning, etc. with Stata’s do-file
language. This can save a great deal of time when mistakes are
detected in the raw data, or when they are revised.

Christopher F Baum (Boston College) Why become a Stata programmer? 8 / 55

Should you become a Stata programmer? Writing your own ado-files

Context 2: ado-file programming

You may find that despite the breadth of Stata’s official and user-writen
commands, there are tasks that you must repeatedly perform that
involve variations on the same do-file. You would like Stata to have a
command to perform those tasks. At that point, you should consider
Stata’s ado-file programming capabilities.

Christopher F Baum (Boston College) Why become a Stata programmer? 9 / 55

Should you become a Stata programmer? Writing your own ado-files

Stata has great flexibility: a Stata command need be no more than a
few lines of Stata code, and once defined that command becomes a
“first-class citizen." You can easily write a Stata program, stored in an
ado-file, that handles all the features of official Stata commands such
as if exp, in range and command options. You can (and should)
write a help file that documents its operation for your benefit and for
those with whom you share the code.

Although ado-file programming requires that you learn how to use
some additional commands used in that context, it may help you
become more efficient in performing the data management, statistical
or graphical tasks that you face.

Christopher F Baum (Boston College) Why become a Stata programmer? 10 / 55

Should you become a Stata programmer? Writing your own ado-files

Stata has great flexibility: a Stata command need be no more than a
few lines of Stata code, and once defined that command becomes a
“first-class citizen." You can easily write a Stata program, stored in an
ado-file, that handles all the features of official Stata commands such
as if exp, in range and command options. You can (and should)
write a help file that documents its operation for your benefit and for
those with whom you share the code.

Although ado-file programming requires that you learn how to use
some additional commands used in that context, it may help you
become more efficient in performing the data management, statistical
or graphical tasks that you face.

Christopher F Baum (Boston College) Why become a Stata programmer? 10 / 55

Should you become a Stata programmer? Writing your own ado-files

My first response to would-be ado-file programmers: don’t! In many
cases, standard Stata commands will perform the tasks you need. A
better understanding of the capabilities of those commands will often
lead to a researcher realizing that a combination of Stata commands
will do the job nicely, without the need for custom programming.

Those familiar with other statistical packages or computer languages
often see the need to write a program to perform a task that can be
handled with some of Stata’s unique constructs: the local macro and
the functions available for handling macros and lists. If you become
familiar with those tools, as well as the full potential of commands such
as merge, you may recognize that your needs can be readily met.

Christopher F Baum (Boston College) Why become a Stata programmer? 11 / 55

Should you become a Stata programmer? Writing your own ado-files

My first response to would-be ado-file programmers: don’t! In many
cases, standard Stata commands will perform the tasks you need. A
better understanding of the capabilities of those commands will often
lead to a researcher realizing that a combination of Stata commands
will do the job nicely, without the need for custom programming.

Those familiar with other statistical packages or computer languages
often see the need to write a program to perform a task that can be
handled with some of Stata’s unique constructs: the local macro and
the functions available for handling macros and lists. If you become
familiar with those tools, as well as the full potential of commands such
as merge, you may recognize that your needs can be readily met.

Christopher F Baum (Boston College) Why become a Stata programmer? 11 / 55

Should you become a Stata programmer? Writing your own ado-files

The second bit of advice along those lines: use Stata’s search features
such as findit and the Stata user community (via Statalist) to ensure
that the program you envision writing has not already been written. In
many cases an official Stata command will do almost what you want,
and you can modify (and rename) a copy of that command to add the
features you need.

In other cases, a user-written program from the Stata Journal or the
SSC Archive (help ssc) may be close to what you need. You can
either contact its author or modify (and rename) a copy of that
command to meet your needs.

In either case, the bottom line is the same advice:
don’t waste your time reinventing the wheel!

Christopher F Baum (Boston College) Why become a Stata programmer? 12 / 55

Should you become a Stata programmer? Writing your own ado-files

The second bit of advice along those lines: use Stata’s search features
such as findit and the Stata user community (via Statalist) to ensure
that the program you envision writing has not already been written. In
many cases an official Stata command will do almost what you want,
and you can modify (and rename) a copy of that command to add the
features you need.

In other cases, a user-written program from the Stata Journal or the
SSC Archive (help ssc) may be close to what you need. You can
either contact its author or modify (and rename) a copy of that
command to meet your needs.

In either case, the bottom line is the same advice:
don’t waste your time reinventing the wheel!

Christopher F Baum (Boston College) Why become a Stata programmer? 12 / 55

Should you become a Stata programmer? Writing your own ado-files

The second bit of advice along those lines: use Stata’s search features
such as findit and the Stata user community (via Statalist) to ensure
that the program you envision writing has not already been written. In
many cases an official Stata command will do almost what you want,
and you can modify (and rename) a copy of that command to add the
features you need.

In other cases, a user-written program from the Stata Journal or the
SSC Archive (help ssc) may be close to what you need. You can
either contact its author or modify (and rename) a copy of that
command to meet your needs.

In either case, the bottom line is the same advice:
don’t waste your time reinventing the wheel!

Christopher F Baum (Boston College) Why become a Stata programmer? 12 / 55

Should you become a Stata programmer? Writing your own ado-files

If your particular needs are not met by existing Stata commands nor by
user-written software, and they involve a general task, you should
consider writing your own ado-file. In contrast to many statistical
programming languages and software environments, Stata makes it
very easy to write new commands which implement all of Stata’s
features and error-checking tools. Some investment in the ado-file
language is needed (perhaps by taking a NetCourse on Stata
programming) but a good understanding of the features of that
language—such as the program and syntax statements—is not
hard to develop.

Christopher F Baum (Boston College) Why become a Stata programmer? 13 / 55

Should you become a Stata programmer? Writing your own ado-files

A huge benefit accrues to the ado-file author: few data management,
statistical or graphical tasks are unique. Once you develop an ado-file
to perform a particular task, you will probably run across another task
that is quite similar. A clone of the ado-file, customized for the new
task, will often suffice.

In this context, ado-file programming allows you to assemble a
workbench of tools where most of the associated cost is learning how
to build the first few tools.

Christopher F Baum (Boston College) Why become a Stata programmer? 14 / 55

Should you become a Stata programmer? Writing your own ado-files

A huge benefit accrues to the ado-file author: few data management,
statistical or graphical tasks are unique. Once you develop an ado-file
to perform a particular task, you will probably run across another task
that is quite similar. A clone of the ado-file, customized for the new
task, will often suffice.

In this context, ado-file programming allows you to assemble a
workbench of tools where most of the associated cost is learning how
to build the first few tools.

Christopher F Baum (Boston College) Why become a Stata programmer? 14 / 55

Should you become a Stata programmer? Writing your own ado-files

Another rationale for many researchers to develop limited fluency in
Stata’s ado-file language:

Stata’s maximum likelihood (ml) capabilities involves the
construction of ado-file programs defining the likelihood function.
The simulate, bootstrap and jackknife commands may be
used with standard Stata commands, but in many cases may
require that a command be constructed to produce the needed
results for each repetition.
Although the nonlinear least squares commands (nl, nlsur) may
be used in an interactive mode, it is likely that a Stata program will
often be the easiest way to perform any complex NLLS task.

Christopher F Baum (Boston College) Why become a Stata programmer? 15 / 55

Should you become a Stata programmer? Writing your own ado-files

Another rationale for many researchers to develop limited fluency in
Stata’s ado-file language:

Stata’s maximum likelihood (ml) capabilities involves the
construction of ado-file programs defining the likelihood function.
The simulate, bootstrap and jackknife commands may be
used with standard Stata commands, but in many cases may
require that a command be constructed to produce the needed
results for each repetition.
Although the nonlinear least squares commands (nl, nlsur) may
be used in an interactive mode, it is likely that a Stata program will
often be the easiest way to perform any complex NLLS task.

Christopher F Baum (Boston College) Why become a Stata programmer? 15 / 55

Should you become a Stata programmer? Writing your own ado-files

Another rationale for many researchers to develop limited fluency in
Stata’s ado-file language:

Stata’s maximum likelihood (ml) capabilities involves the
construction of ado-file programs defining the likelihood function.
The simulate, bootstrap and jackknife commands may be
used with standard Stata commands, but in many cases may
require that a command be constructed to produce the needed
results for each repetition.
Although the nonlinear least squares commands (nl, nlsur) may
be used in an interactive mode, it is likely that a Stata program will
often be the easiest way to perform any complex NLLS task.

Christopher F Baum (Boston College) Why become a Stata programmer? 15 / 55

Should you become a Stata programmer? Writing your own ado-files

Another rationale for many researchers to develop limited fluency in
Stata’s ado-file language:

Stata’s maximum likelihood (ml) capabilities involves the
construction of ado-file programs defining the likelihood function.
The simulate, bootstrap and jackknife commands may be
used with standard Stata commands, but in many cases may
require that a command be constructed to produce the needed
results for each repetition.
Although the nonlinear least squares commands (nl, nlsur) may
be used in an interactive mode, it is likely that a Stata program will
often be the easiest way to perform any complex NLLS task.

Christopher F Baum (Boston College) Why become a Stata programmer? 15 / 55

Should you become a Stata programmer? Writing Mata subroutines for ado-files

Context 3: Mata subroutines for ado-files

Your ado-files may perform some complicated tasks which involve
many invocations of the same commands. Stata’s ado-file language is
easy to read and write, but it is interpreted: Stata must evaluate each
statement and translate it into machine code. Stata’s Mata
programming language (help mata) creates compiled code which
can run much faster than ado-file code.

Your ado-file can call a Mata routine to carry out a computationally
intensive task and return the results in the form of Stata variables,
scalars or matrices. Although you may think of Mata solely as a “matrix
language”, it is actually a general-purpose programming language,
suitable for many non-matrix-oriented tasks such as text processing
and list management.

Christopher F Baum (Boston College) Why become a Stata programmer? 16 / 55

Should you become a Stata programmer? Writing Mata subroutines for ado-files

Context 3: Mata subroutines for ado-files

Your ado-files may perform some complicated tasks which involve
many invocations of the same commands. Stata’s ado-file language is
easy to read and write, but it is interpreted: Stata must evaluate each
statement and translate it into machine code. Stata’s Mata
programming language (help mata) creates compiled code which
can run much faster than ado-file code.

Your ado-file can call a Mata routine to carry out a computationally
intensive task and return the results in the form of Stata variables,
scalars or matrices. Although you may think of Mata solely as a “matrix
language”, it is actually a general-purpose programming language,
suitable for many non-matrix-oriented tasks such as text processing
and list management.

Christopher F Baum (Boston College) Why become a Stata programmer? 16 / 55

Should you become a Stata programmer? Writing Mata subroutines for ado-files

The Mata programming environment is tightly integrated with Stata,
allowing interchange of variables, local and global macros and Stata
matrices to and from Mata without the necessity to make copies of
those objects. A Mata program can easily generate an entire set of
new variables (often in one matrix operation), and those variables will
be available to Stata when the Mata routine terminates.

Mata’s similarity to the C language makes it very easy to use for
anyone with prior knowledge of C. Its handling of matrices is broadly
similar to the syntax of other matrix programming languages such as
MATLAB, Ox and GAUSS. Translation of existing code for those
languages or from lower-level languages such as Fortran or C is
usually quite straightforward. Unlike Stata’s C plugins, code in Mata is
platform-independent, and developing code in Mata is easier than in
compiled C.

Christopher F Baum (Boston College) Why become a Stata programmer? 17 / 55

Should you become a Stata programmer? Writing Mata subroutines for ado-files

The Mata programming environment is tightly integrated with Stata,
allowing interchange of variables, local and global macros and Stata
matrices to and from Mata without the necessity to make copies of
those objects. A Mata program can easily generate an entire set of
new variables (often in one matrix operation), and those variables will
be available to Stata when the Mata routine terminates.

Mata’s similarity to the C language makes it very easy to use for
anyone with prior knowledge of C. Its handling of matrices is broadly
similar to the syntax of other matrix programming languages such as
MATLAB, Ox and GAUSS. Translation of existing code for those
languages or from lower-level languages such as Fortran or C is
usually quite straightforward. Unlike Stata’s C plugins, code in Mata is
platform-independent, and developing code in Mata is easier than in
compiled C.

Christopher F Baum (Boston College) Why become a Stata programmer? 17 / 55

Tools for do-file authors

Tools for do-file authors

In this section of the talk, I will mention a number of tools and tricks
useful for do-file authors. Like any language, the Stata do-file language
can be used eloquently or incoherently. Users who bring other
languages’ techniques and try to reproduce them in Stata often find
that their Stata programs resemble Google’s automated translation of
French to English: possibly comprehensible, but a long way from what
a native speaker would say. We present suggestions on how the
language may be used most effectively.

Although I focus on authoring do-files, these tips are equally useful for
ado-file authors: and perhaps even more important in that context, as
an ado-file program may be run many times.

Christopher F Baum (Boston College) Why become a Stata programmer? 18 / 55

Tools for do-file authors

Tools for do-file authors

In this section of the talk, I will mention a number of tools and tricks
useful for do-file authors. Like any language, the Stata do-file language
can be used eloquently or incoherently. Users who bring other
languages’ techniques and try to reproduce them in Stata often find
that their Stata programs resemble Google’s automated translation of
French to English: possibly comprehensible, but a long way from what
a native speaker would say. We present suggestions on how the
language may be used most effectively.

Although I focus on authoring do-files, these tips are equally useful for
ado-file authors: and perhaps even more important in that context, as
an ado-file program may be run many times.

Christopher F Baum (Boston College) Why become a Stata programmer? 18 / 55

Tools for do-file authors Looping over observations is rarely appropriate

One of the important metaphors of Stata usage is that commands
operate on the entire data set unless otherwise specified. There is
rarely any reason to explicitly loop over observations. Constructs
which would require looping in other programming languages are
generally single commands in Stata: e.g., recode.

For example: do not use the “programmer’s if” on Stata variables!
For example,

if (race == 1) {
(calculate something)

} else if (race == 2) {
...

will not do what you expect. It will examine the value of race in the
first observation of the data set, not in each observation in turn! In this
case the if qualifier should be used.

Christopher F Baum (Boston College) Why become a Stata programmer? 19 / 55

Tools for do-file authors Looping over observations is rarely appropriate

One of the important metaphors of Stata usage is that commands
operate on the entire data set unless otherwise specified. There is
rarely any reason to explicitly loop over observations. Constructs
which would require looping in other programming languages are
generally single commands in Stata: e.g., recode.

For example: do not use the “programmer’s if” on Stata variables!
For example,

if (race == 1) {
(calculate something)

} else if (race == 2) {
...

will not do what you expect. It will examine the value of race in the
first observation of the data set, not in each observation in turn! In this
case the if qualifier should be used.

Christopher F Baum (Boston College) Why become a Stata programmer? 19 / 55

Tools for do-file authors The by prefix can often replace a loop

A programming construct rather unique to Stata is the by prefix. It
allows you to loop over the values of one or several categorical
variables without having to explicitly spell out those values. Its
limitation: it can only execute a single command as its argument. In
many cases, though, that is quite sufficient. For example, in an
individual-level data set,

bysort familyid : generate familysize = _N
bysort familyid : generate single = (_N == 1)

will generate a family size variable by using _N, the total number of
observations in the by-group. Single households are those for which
that number is one; the second statement creates an indicator
(dummy) variable for that household status.

Christopher F Baum (Boston College) Why become a Stata programmer? 20 / 55

Tools for do-file authors Repeated statements are usually not needed

When I see a do-file with a number of very similar statements, I know
that the author’s first language was not Stata. A construct such as

generate newcode = 1 if oldcode == 11
replace newcode = 2 if oldcode == 21
replace newcode = 3 if oldcode == 31
...

suggests to me that the author should read help recode. See below
for a way to automate a recode statement.

A number of generate functions can also come in handy:
inlist(), inrange(), cond(), recode(), which can all
be used to map multiple values of one variable into a new variable.

Christopher F Baum (Boston College) Why become a Stata programmer? 21 / 55

Tools for do-file authors Repeated statements are usually not needed

When I see a do-file with a number of very similar statements, I know
that the author’s first language was not Stata. A construct such as

generate newcode = 1 if oldcode == 11
replace newcode = 2 if oldcode == 21
replace newcode = 3 if oldcode == 31
...

suggests to me that the author should read help recode. See below
for a way to automate a recode statement.

A number of generate functions can also come in handy:
inlist(), inrange(), cond(), recode(), which can all
be used to map multiple values of one variable into a new variable.

Christopher F Baum (Boston College) Why become a Stata programmer? 21 / 55

Tools for do-file authors Merge can solve concordance problems

A more general technique to solve concordance problems is offered by
merge. If you want to map (or concord) values into a particular
scheme—for instance, associate the average income in a postal code
with all households whose address lies in that code—do not use
commands to define that mapping. Construct a separate data set,
containing the postal code and average income value (and any other
available measurements) and merge it with the household-level data
set:

sort postalcode
merge postalcode using pcstats, uniqusing

where the uniqusing option specifies that the postal-code file must
have unique entries of that variable. If additional information is
available at the postal code level, you may just add it to the using file
and run the merge again. One merge command replaces many
explicit generate and replace commands.

Christopher F Baum (Boston College) Why become a Stata programmer? 22 / 55

Tools for do-file authors Some simple commands are often overlooked

Nick Cox’s Speaking Stata column in the Stata Journal has pointed out
several often-overlooked but very useful commands. For instance, the
count command can be used to determine, in ad hoc interactive use
or in a do-file, how many observations satisfy a logical condition. For
do-file authors, the assert command may be used to ensure that a
necessary condition is satisfied: e.g.

assert gender == 1 | gender == 2

will bring the do-file to a halt if that condition fails. This is a very useful
tool to both validate raw data and ensure that any transformations
have been conducted properly.

Duplicate entries in certain variables may be logically impossible. How
can you determine whether they exist, and if so, deal with them? The
duplicates suite of commands provides a comprehensive set of
tools for dealing with duplicate entries.

Christopher F Baum (Boston College) Why become a Stata programmer? 23 / 55

Tools for do-file authors Some simple commands are often overlooked

Nick Cox’s Speaking Stata column in the Stata Journal has pointed out
several often-overlooked but very useful commands. For instance, the
count command can be used to determine, in ad hoc interactive use
or in a do-file, how many observations satisfy a logical condition. For
do-file authors, the assert command may be used to ensure that a
necessary condition is satisfied: e.g.

assert gender == 1 | gender == 2

will bring the do-file to a halt if that condition fails. This is a very useful
tool to both validate raw data and ensure that any transformations
have been conducted properly.

Duplicate entries in certain variables may be logically impossible. How
can you determine whether they exist, and if so, deal with them? The
duplicates suite of commands provides a comprehensive set of
tools for dealing with duplicate entries.

Christopher F Baum (Boston College) Why become a Stata programmer? 23 / 55

Tools for do-file authors egen functions can solve many programming problems

Every do-file author should be familiar with [D] functions
(functions for generate) and [D] egen. The list of official egen
functions includes many tools which you may find very helpful: for
instance, a set of row-wise functions that allow you to specify a list of
variables, which mimic similar functions in a spreadsheet environment.
Matching functions such as anycount, anymatch, anyvalue
allow you to find matching values in a varlist. Statistical egen
functions allow you to compute various statistics as new variables:
particularly useful in conjunction with the by-prefix, as we will discuss.

In addition, the list of egen functions is open-ended: many user-written
functions are available in the SSC Archive (notably, Nick Cox’s
egenmore), and you can write your own.

Christopher F Baum (Boston College) Why become a Stata programmer? 24 / 55

Tools for do-file authors egen functions can solve many programming problems

Every do-file author should be familiar with [D] functions
(functions for generate) and [D] egen. The list of official egen
functions includes many tools which you may find very helpful: for
instance, a set of row-wise functions that allow you to specify a list of
variables, which mimic similar functions in a spreadsheet environment.
Matching functions such as anycount, anymatch, anyvalue
allow you to find matching values in a varlist. Statistical egen
functions allow you to compute various statistics as new variables:
particularly useful in conjunction with the by-prefix, as we will discuss.

In addition, the list of egen functions is open-ended: many user-written
functions are available in the SSC Archive (notably, Nick Cox’s
egenmore), and you can write your own.

Christopher F Baum (Boston College) Why become a Stata programmer? 24 / 55

Tools for do-file authors Learn how to use return and ereturn

Almost all Stata commands return their results in the return list or the
ereturn list. These returned items are categorized as macros, scalars
or matrices. Your do-file may make use of any information left behind
as long as you understand how to save it for future use and refer to it in
your do-file. For instance, highlighting the use of assert:

summarize region, meanonly
assert r(min) > 0 & r(max) < 5

will validate the values of region in the data set to ensure that they
are valid. summarize is an r-class command, and returns its results in
r() items. Estimation commands, such as regress or probit,
return their results in the ereturn list. For instance, e(r2) is the
regression R2, and matrix e(b) is the row vector of estimated
coefficients.

Christopher F Baum (Boston College) Why become a Stata programmer? 25 / 55

Tools for do-file authors Learn how to use return and ereturn

The values from the return list and ereturn list may be used
in computations:

summarize famsize, detail
scalar iqr = r(p75) - r(p25)
scalar semean = r(sd) / sqrt(r(N))
display "IQR : " iqr
display "mean : " r(mean) " s.e. : " semean

will compute and display the inter-quartile range and the standard error
of the mean of famsize. Here we have used Stata’s scalars to
compute and store numeric values.

In Stata, the scalar plays the role of a “variable” in a traditional
programming language.

Christopher F Baum (Boston College) Why become a Stata programmer? 26 / 55

Tools for do-file authors Learn how to use return and ereturn

The values from the return list and ereturn list may be used
in computations:

summarize famsize, detail
scalar iqr = r(p75) - r(p25)
scalar semean = r(sd) / sqrt(r(N))
display "IQR : " iqr
display "mean : " r(mean) " s.e. : " semean

will compute and display the inter-quartile range and the standard error
of the mean of famsize. Here we have used Stata’s scalars to
compute and store numeric values.

In Stata, the scalar plays the role of a “variable” in a traditional
programming language.

Christopher F Baum (Boston College) Why become a Stata programmer? 26 / 55

Tools for do-file authors The local macro

The local macro is an invaluable tool for do-file authors. A local macro
is created with the local statement, which serves to name the macro
and provide its content. When you next refer to the macro, you extract
its value by dereferencing it, using the backtick (‘) and apostrophe (’)
on its left and right:

local george 2
local paul = ‘george’ + 2

In this case, I use an equals sign in the second local statement as I
want to evaluate the right-hand side, as an arithmetic expression, and
store it in the macro paul. If I did not use the equals sign in this
context, the macro paul would contain the string 2 + 2.

Christopher F Baum (Boston College) Why become a Stata programmer? 27 / 55

Tools for do-file authors forvalues and foreach

In other cases, you want to redefine the macro, not evaluate it, and you
should not use an equals sign. You merely want to take the contents of
the macro (a character string) and alter that string. It is easiest to
illustrate this concept by introducing the two key programming
constructs for repetition: forvalues and foreach. These
commands, defined in the Programming manual, are essential for
do-file writers seeking to automate their workflow. Both commands
make essential use of local macros as their “counter”. For instance:

forvalues i=1/10 {
summarize PRweek‘i’

}

Note that the value of the local macro i is used within the body of the
loop when that counter is to be referenced. Any Stata numlist may
appear in the forvalues statement. Note also the curly braces,
which must appear at the end of their lines.

Christopher F Baum (Boston College) Why become a Stata programmer? 28 / 55

Tools for do-file authors forvalues and foreach

In many cases, the forvalues command will allow you to substitute
explicit statements with a single loop construct. By modifying the range
and body of the loop, you can easily rewrite your do-file to handle a
different case.

The foreach command is even more useful. It defines an iteration
over any one of a number of lists:

the contents of a varlist (list of existing variables)
the contents of a newlist (list of new variables)
the contents of a numlist
the separate words of a macro
the elements of an arbitrary list

Christopher F Baum (Boston College) Why become a Stata programmer? 29 / 55

Tools for do-file authors forvalues and foreach

In many cases, the forvalues command will allow you to substitute
explicit statements with a single loop construct. By modifying the range
and body of the loop, you can easily rewrite your do-file to handle a
different case.

The foreach command is even more useful. It defines an iteration
over any one of a number of lists:

the contents of a varlist (list of existing variables)
the contents of a newlist (list of new variables)
the contents of a numlist
the separate words of a macro
the elements of an arbitrary list

Christopher F Baum (Boston College) Why become a Stata programmer? 29 / 55

Tools for do-file authors forvalues and foreach

In many cases, the forvalues command will allow you to substitute
explicit statements with a single loop construct. By modifying the range
and body of the loop, you can easily rewrite your do-file to handle a
different case.

The foreach command is even more useful. It defines an iteration
over any one of a number of lists:

the contents of a varlist (list of existing variables)
the contents of a newlist (list of new variables)
the contents of a numlist
the separate words of a macro
the elements of an arbitrary list

Christopher F Baum (Boston College) Why become a Stata programmer? 29 / 55

Tools for do-file authors forvalues and foreach

For example, we might want to summarize each of these variables:

foreach v of varlist price mpg rep78 {
summarize ‘v’, detail

}

Or, run a regression on variables for each country, and graph the data
and fitted line:

local eucty DE ES FR IT UK
foreach c of local eucty {

regress healthexp‘c’ income‘c’
twoway (scatter healthexp‘c’ income‘c’) || ///

(lfit healthexp‘c’ income‘c’)
}

Christopher F Baum (Boston College) Why become a Stata programmer? 30 / 55

Tools for do-file authors forvalues and foreach

For example, we might want to summarize each of these variables:

foreach v of varlist price mpg rep78 {
summarize ‘v’, detail

}

Or, run a regression on variables for each country, and graph the data
and fitted line:

local eucty DE ES FR IT UK
foreach c of local eucty {

regress healthexp‘c’ income‘c’
twoway (scatter healthexp‘c’ income‘c’) || ///

(lfit healthexp‘c’ income‘c’)
}

Christopher F Baum (Boston College) Why become a Stata programmer? 30 / 55

Tools for do-file authors forvalues and foreach

We can now illustrate how a local macro could be constructed by
redefinition:

local eucty DE ES FR IT UK
local alleps
foreach c of local eucty {

regress healthexp‘c’ income‘c’
predict double eps‘c’, residual
local alleps "‘alleps’ eps‘c’"

}

Within the loop we redefine the macro alleps (as a double-quoted
string) to contain itself and the name of the residuals from that
country’s regression. We could then use the macro alleps to
generate a graph of all five countries’ residuals:

tsline ‘alleps’

Christopher F Baum (Boston College) Why become a Stata programmer? 31 / 55

Tools for do-file authors forvalues and foreach

This technique can be used to automate a recode operation. Say that
we had sequential codes for several countries (cc) coded as 1–4, and
we wanted to apply IMF country codes to them:

local ctycode 111 112 136 134
local i 0
foreach c of local ctycode {

local ++i
local rc "‘rc’ (‘i’=‘c’)"

}

display "‘rc’"
(1=111) (2=112) (3=136) (4=134)

recode cc ‘rc’, gen(newcc)
(400 differences between cc and newcc)

Christopher F Baum (Boston College) Why become a Stata programmer? 32 / 55

Tools for do-file authors extended macro functions, list functions, levelsof

Beyond their use in loop constructs, local macros can also be
manipulated with an extensive set of extended macro functions and list
functions. These functions (described in [P] macro and [P] macro
lists) can be used to count the number of elements in a macro,
extract each element in turn, extract the variable label or value label
from a variable, or generate a list of files that match a particular
pattern. A number of string functions are available in [D] functions
to perform string manipulation tasks found in other string processing
languages (including support for regular expressions, or regexps.)

A very handy command that produces a macro is levelsof, which
returns a sorted list of the distinct values of varname, optionally as a
macro. This list would be used in a by-prefix expression automatically,
but what if you want to issue several commands rather than one? Then
a foreach, using the local macro created by levelsof, is the
solution.

Christopher F Baum (Boston College) Why become a Stata programmer? 33 / 55

Tools for do-file authors extended macro functions, list functions, levelsof

Beyond their use in loop constructs, local macros can also be
manipulated with an extensive set of extended macro functions and list
functions. These functions (described in [P] macro and [P] macro
lists) can be used to count the number of elements in a macro,
extract each element in turn, extract the variable label or value label
from a variable, or generate a list of files that match a particular
pattern. A number of string functions are available in [D] functions
to perform string manipulation tasks found in other string processing
languages (including support for regular expressions, or regexps.)

A very handy command that produces a macro is levelsof, which
returns a sorted list of the distinct values of varname, optionally as a
macro. This list would be used in a by-prefix expression automatically,
but what if you want to issue several commands rather than one? Then
a foreach, using the local macro created by levelsof, is the
solution.

Christopher F Baum (Boston College) Why become a Stata programmer? 33 / 55

Tools for do-file authors estimates and estout

Example: estimates and estout

Anyone who performs empirical research is familiar with the tedious
task of turning estimation output into tables, with appropriate handling
of standard errors or t-statistics, p-values, significance stars, the
alignment of explanatory variables and presentation of summary
statistics. Stata’s own estimates commands make that a bit simpler
by allowing you to estimates store and produce a crude but
readable table from several sets of output, with some control over the
format and contents of the table, with estimates table. But that is
a long way from publishable-quality results.

Christopher F Baum (Boston College) Why become a Stata programmer? 34 / 55

Tools for do-file authors estimates and estout

Thankfully, Ben Jann’s estout suite of programs provides complete,
easy-to-use routines to turn sets of estimates into publication-quality
tables in LATEX, MSWord or HTML formats. The routines have been
described in two Stata Journal articles, 5:3 (2005) and 7:2 (2007), and
estout has its own website:

http://repec.org/bocode/e/estout

which has explanations of all of the available options and numerous
worked examples of its use.

Christopher F Baum (Boston College) Why become a Stata programmer? 35 / 55

Tools for do-file authors estimates and estout

To use the facilities of estout, you merely preface the estimation
commands with eststo:

eststo: regress y x1 x2 x3
eststo: probit z a1 a2 a3 a4
eststo: ivreg2 y3 (y1 y2 = z1-z4) z5 z6, gmm2s

Then, to produce a table, just give command

esttab using myests.tex

which will create the LATEX table in that file. A file destined for Excel
would use the .csv extension; for Word, use .rtf. You may also use
extension .html or .smcl (Stata’s own markup language).

Christopher F Baum (Boston College) Why become a Stata programmer? 36 / 55

Tools for do-file authors estimates and estout

The esttab command is a easy-to-use wrapper for estout, which
has many options to control the exact format and content of the table.
Any of the estout options may be used in the esttab command. For
instance, you may want to suppress the coefficient listings of year
dummies in a panel regression.

You may also use estadd to include user-generated statistics in the
ereturn list (such as elasticities produced by mfx) so that they
can be accessed by esttab.

Christopher F Baum (Boston College) Why become a Stata programmer? 37 / 55

Tools for do-file authors estimates and estout

The esttab command is a easy-to-use wrapper for estout, which
has many options to control the exact format and content of the table.
Any of the estout options may be used in the esttab command. For
instance, you may want to suppress the coefficient listings of year
dummies in a panel regression.

You may also use estadd to include user-generated statistics in the
ereturn list (such as elasticities produced by mfx) so that they
can be accessed by esttab.

Christopher F Baum (Boston College) Why become a Stata programmer? 37 / 55

Tools for do-file authors estimates and estout

One very useful feature is the margin option of esttab, which allows
you to display only the marginal effects (and not the estimated
coefficients) of a limited dependent variable model such as logit or
probit. You may also display the results of multiple-equation models
using estout.

It may be necessary to change the format of your estimation tables
when submitting a paper to a different journal: for instance, one which
wants t-statistics rather than standard errors reported. This may be
easily achieved by just rerunning the estimation job with different
estout options.

Christopher F Baum (Boston College) Why become a Stata programmer? 38 / 55

Tools for do-file authors estimates and estout

One very useful feature is the margin option of esttab, which allows
you to display only the marginal effects (and not the estimated
coefficients) of a limited dependent variable model such as logit or
probit. You may also display the results of multiple-equation models
using estout.

It may be necessary to change the format of your estimation tables
when submitting a paper to a different journal: for instance, one which
wants t-statistics rather than standard errors reported. This may be
easily achieved by just rerunning the estimation job with different
estout options.

Christopher F Baum (Boston College) Why become a Stata programmer? 38 / 55

Ado-file programming: a primer The program statement

Ado-file programming: a primer

A Stata program adds a command to Stata’s language. The name of
the program is the command name, and the program must be stored in
a file of that same name with extension .ado, and placed on the
adopath: the list of directories that Stata will search to locate programs.

A program begins with the program define progname statement,
which usually includes the option , rclass, and a version 10.0
statement. The progname should not be the same as any Stata
command, nor for safety’s sake the same as any accessible
user-written command. If findit progname does not turn up
anything, you can use that name. Programs (and Stata commands)
are either r-class or e-class. The latter group of programs are for
estimation; the former do everything else. Most programs you write are
likely to be r-class.

Christopher F Baum (Boston College) Why become a Stata programmer? 39 / 55

Ado-file programming: a primer The program statement

Ado-file programming: a primer

A Stata program adds a command to Stata’s language. The name of
the program is the command name, and the program must be stored in
a file of that same name with extension .ado, and placed on the
adopath: the list of directories that Stata will search to locate programs.

A program begins with the program define progname statement,
which usually includes the option , rclass, and a version 10.0
statement. The progname should not be the same as any Stata
command, nor for safety’s sake the same as any accessible
user-written command. If findit progname does not turn up
anything, you can use that name. Programs (and Stata commands)
are either r-class or e-class. The latter group of programs are for
estimation; the former do everything else. Most programs you write are
likely to be r-class.

Christopher F Baum (Boston College) Why become a Stata programmer? 39 / 55

Ado-file programming: a primer The syntax statement

The syntax statement will almost always be used to define the
command’s format. For instance, a command that accesses one or
more variables in the current data set will have a syntax varlist
statement. With specifiers, you can specify the minimum and
maximum number of variables to be accepted; whether they are
numeric or string; and whether time-series operators are allowed.
Each variable name in the varlist must refer to an existing variable.

Alternatively, you could specify a newvarlist, the elements of which
must refer to new variables.

Christopher F Baum (Boston College) Why become a Stata programmer? 40 / 55

Ado-file programming: a primer The syntax statement

One of the most useful features of the syntax statement is that you
can specify [if] and [in] arguments, which allow your command to
make use of standard if exp and in range syntax to limit the
observations to be used. Later in the program, you use marksample
touse to create an indicator (dummy) temporary variable identifying
those observations, and an if ‘touse’ qualifier on statements such
as generate and regress.

The syntax statement may also include a using qualifier, allowing
your command to read or write external files, and a specification of
command options.

Christopher F Baum (Boston College) Why become a Stata programmer? 41 / 55

Ado-file programming: a primer The syntax statement

One of the most useful features of the syntax statement is that you
can specify [if] and [in] arguments, which allow your command to
make use of standard if exp and in range syntax to limit the
observations to be used. Later in the program, you use marksample
touse to create an indicator (dummy) temporary variable identifying
those observations, and an if ‘touse’ qualifier on statements such
as generate and regress.

The syntax statement may also include a using qualifier, allowing
your command to read or write external files, and a specification of
command options.

Christopher F Baum (Boston College) Why become a Stata programmer? 41 / 55

Ado-file programming: a primer The syntax statement

Option handling includes the ability to make options optional or
required; to specify options that change a setting (such as regress,
noconstant); that must be integer values; that must be real values;
or that must be strings. Options can specify a numlist (such as a list of
lags to be included), a varlist (to implement, for instance, a by(
varlist) option); a namelist (such as the name of a matrix to be
created, or the name of a new variable).

Essentially, any feature that you may find in an official Stata command,
you may implement with the appropriate syntax statement. See [P]
syntax for full details and examples.

Christopher F Baum (Boston College) Why become a Stata programmer? 42 / 55

Ado-file programming: a primer The syntax statement

Within your own command, you do not want to reuse the names of
existing variables or matrices. You may use the tempvar and
tempname commands to create “safe” names for variables or
matrices, respectively, which you then refer to as local macros. That is,
tempvar eps1 eps2 will create temporary variable names which
you could then use as generate double ‘eps1’ =

These variables and temporary named objects will disappear when
your program terminates (just as any local macros defined within the
program will become undefined upon exit).

Christopher F Baum (Boston College) Why become a Stata programmer? 43 / 55

Ado-file programming: a primer The syntax statement

So after doing whatever computations or manipulations you need
within your program, how do you return its results? You may include
display statements in your program to print out the results, but like
official Stata commands, your program will be most useful if it also
returns those results for further use. Given that your program has been
declared rclass, you use the return statement for that purpose.

You may return scalars, local macros, or matrices:

return scalar teststat = ‘testval’
return local df = ‘N’ - ‘k’
return local depvar "‘varname’"
return matrix lambda = ‘lambda’

These objects may be accessed as r(name) in your do-file: e.g.
r(df) will contain the number of degrees of freedom calculated in
your program.

Christopher F Baum (Boston College) Why become a Stata programmer? 44 / 55

Ado-file programming: a primer The syntax statement

So after doing whatever computations or manipulations you need
within your program, how do you return its results? You may include
display statements in your program to print out the results, but like
official Stata commands, your program will be most useful if it also
returns those results for further use. Given that your program has been
declared rclass, you use the return statement for that purpose.

You may return scalars, local macros, or matrices:

return scalar teststat = ‘testval’
return local df = ‘N’ - ‘k’
return local depvar "‘varname’"
return matrix lambda = ‘lambda’

These objects may be accessed as r(name) in your do-file: e.g.
r(df) will contain the number of degrees of freedom calculated in
your program.

Christopher F Baum (Boston College) Why become a Stata programmer? 44 / 55

Ado-file programming: a primer The syntax statement

A sample program from help return:

program define mysum, rclass
version 10.0
syntax varname
return local varname ‘varlist’
tempvar new
quietly {

count if ‘varlist’!=.
return scalar N = r(N)
gen double ‘new’ = sum(‘varlist’)
return scalar sum = ‘new’[_N]
return scalar mean = return(sum)/return(N)

}
end

Christopher F Baum (Boston College) Why become a Stata programmer? 45 / 55

Ado-file programming: a primer The syntax statement

This program can be executed as mysum varname. It prints nothing,
but places three scalars and a macro in the return list. The
values r(mean), r(sum), r(N), and r(varname) can now be
referred to directly.

With minor modifications, this program can be enhanced to enable the
if exp and in range qualifiers. We add those optional features to
the syntax command, use the marksample command to delineate
the wanted observations by touse, and apply if ‘touse’ qualifiers
on two computational statements:

Christopher F Baum (Boston College) Why become a Stata programmer? 46 / 55

Ado-file programming: a primer The syntax statement

This program can be executed as mysum varname. It prints nothing,
but places three scalars and a macro in the return list. The
values r(mean), r(sum), r(N), and r(varname) can now be
referred to directly.

With minor modifications, this program can be enhanced to enable the
if exp and in range qualifiers. We add those optional features to
the syntax command, use the marksample command to delineate
the wanted observations by touse, and apply if ‘touse’ qualifiers
on two computational statements:

Christopher F Baum (Boston College) Why become a Stata programmer? 46 / 55

Ado-file programming: a primer The syntax statement

program define mysum2, rclass
version 10.0
syntax varname [if] [in]
return local varname ‘varlist’
tempvar new
marksample touse
quietly {

count if ‘varlist’!=. & ‘touse’
return scalar N = r(N)
gen double ‘new’ = sum(‘varlist’) if ‘touse’
return scalar sum = ‘new’[_N]
return scalar mean = return(sum)/return(N)

}
end

Christopher F Baum (Boston College) Why become a Stata programmer? 47 / 55

Mata subroutines for ado-files

We now give a simple illustration of how a Mata subroutine could be
used to perform the computations in a do-file. We consider the same
routine: an ado-file, mysum3, which takes a variable name and accepts
optional if or in qualifiers. Rather than computing statistics in the
ado-file, we call the m_mysum routine with two arguments: the variable
name and the ‘touse’ indicator variable.

program define mysum3, rclass
version 10.0
syntax varlist(max=1) [if] [in]
return local varname ‘varlist’
marksample touse
mata: m_mysum("‘varlist’", "‘touse’")
return scalar N = N
return scalar sum = sum
return scalar mean = mu
return scalar sd = sigma

end

Christopher F Baum (Boston College) Why become a Stata programmer? 48 / 55

Mata subroutines for ado-files

In the same ado-file, we include the Mata routine, prefaced by the
mata: directive. This directive on its own line puts Stata into Mata
mode until the end statement is encountered. The Mata routine
creates a Mata view of the variable. A view of the variable is merely a
reference to its contents, which need not be copied to Mata’s
workspace. Note that the contents have been filtered for missing
values and those observations specified in the optional if or in
qualifiers.

That view, labeled as X in the Mata code, is then a matrix (or, in this
case, a column vector) which may be used in various Mata functions
that compute the vector’s descriptive statistics. The computed results
are returned to the ado-file with the st_numscalar() function calls.

Christopher F Baum (Boston College) Why become a Stata programmer? 49 / 55

Mata subroutines for ado-files

In the same ado-file, we include the Mata routine, prefaced by the
mata: directive. This directive on its own line puts Stata into Mata
mode until the end statement is encountered. The Mata routine
creates a Mata view of the variable. A view of the variable is merely a
reference to its contents, which need not be copied to Mata’s
workspace. Note that the contents have been filtered for missing
values and those observations specified in the optional if or in
qualifiers.

That view, labeled as X in the Mata code, is then a matrix (or, in this
case, a column vector) which may be used in various Mata functions
that compute the vector’s descriptive statistics. The computed results
are returned to the ado-file with the st_numscalar() function calls.

Christopher F Baum (Boston College) Why become a Stata programmer? 49 / 55

Mata subroutines for ado-files

version 10.0
mata:
void m_mysum(string scalar vname,

string scalar touse)
{

st_view(X, ., vname, touse)
mu = mean(X)
st_numscalar("N", rows(X))
st_numscalar("mu", mu)
st_numscalar("sum" ,rows(X) * mu)
st_numscalar("sigma", sqrt(variance(X)))

}
end

Christopher F Baum (Boston College) Why become a Stata programmer? 50 / 55

Mata subroutines for ado-files

Although it might appear that the Mata subroutine is an unnecessary
complication for this simple set of computations, the example illustrates
how Mata may be used in conjunction with the ado-file language.

Mata can easily access or modify any object in Stata’s workspace. The
ado-file language can be used to parse the syntax of the command,
and hand off the appropriate variables, observations and parameters
to Mata for numerical processing. Mata can return its results, including
new variables, scalars, macros, and matrices to Stata.

Christopher F Baum (Boston College) Why become a Stata programmer? 51 / 55

Mata subroutines for ado-files

A particularly important feature added to Mata in Stata version 10 is
the suite of optimize() commands. These commands permit you to
define your own optimization routine in Mata and direct its use. The
routine need not be a maximum-likelihood nor nonlinear least squares
routine, but rather any well-defined objective function that you wish to
minimize or maximise.

Just as with ml, you may write a d0, d1 or d2 routine, requiring zero,
first or first and second analytic derivatives in terms of the gradient
vector and Hessian matrix. For ease of use in statistical applications,
you may also construct a v0, v1 or v2 routine in terms of the score
vector and Hessian matrix. For the first time, Stata provides a
non-classical optimization method, Nelder–Mead simplex, in addition
to the classical techniques available elsewhere in Stata.

Christopher F Baum (Boston College) Why become a Stata programmer? 52 / 55

Mata subroutines for ado-files

A particularly important feature added to Mata in Stata version 10 is
the suite of optimize() commands. These commands permit you to
define your own optimization routine in Mata and direct its use. The
routine need not be a maximum-likelihood nor nonlinear least squares
routine, but rather any well-defined objective function that you wish to
minimize or maximise.

Just as with ml, you may write a d0, d1 or d2 routine, requiring zero,
first or first and second analytic derivatives in terms of the gradient
vector and Hessian matrix. For ease of use in statistical applications,
you may also construct a v0, v1 or v2 routine in terms of the score
vector and Hessian matrix. For the first time, Stata provides a
non-classical optimization method, Nelder–Mead simplex, in addition
to the classical techniques available elsewhere in Stata.

Christopher F Baum (Boston College) Why become a Stata programmer? 52 / 55

Mata subroutines for ado-files

In an application of Mata’s optimize() routines, Mark Schaffer and I
have developed a rudimentary estimator for generalised method of
moments / continuously updated estimation (GMM-CUE, a feature
implemented via ado-file code in our ivreg2 routine (Baum, Schaffer
and Stillman, SJ 7(4) 2007).

The Mata routine is both simple and very fast. In benchmark timings,
the Mata GMM-CUE code runs 12–20 times faster than the interpreted
ado-file code in ivreg2. Plainly, there is considerable scope for the
development of computationally efficient and concise estimation
routines with optimize().

Christopher F Baum (Boston College) Why become a Stata programmer? 53 / 55

Mata subroutines for ado-files

In an application of Mata’s optimize() routines, Mark Schaffer and I
have developed a rudimentary estimator for generalised method of
moments / continuously updated estimation (GMM-CUE, a feature
implemented via ado-file code in our ivreg2 routine (Baum, Schaffer
and Stillman, SJ 7(4) 2007).

The Mata routine is both simple and very fast. In benchmark timings,
the Mata GMM-CUE code runs 12–20 times faster than the interpreted
ado-file code in ivreg2. Plainly, there is considerable scope for the
development of computationally efficient and concise estimation
routines with optimize().

Christopher F Baum (Boston College) Why become a Stata programmer? 53 / 55

Shameless advert

 Telephone: 979-696-4600
 800-782-8272
 800-STATAPC

 Fax: 979-696-4601
 Email: service@stata-press.com
 URL: http://www.stata-press.com

AN
 IN

TROD
UCTION

 TO STATA PROGRAM
M

IN
G

BAUM

CHRISTOPHER F. BAUM

An Introduction to
Stata Programming

10100101001010100101010100101010010010101001001010100

10100101001010100101010100101010010010101001001010100

Rosto enis at. Utat, volor in euis num eugue facidunt utat nonsenissim veliquat prat.
Duipsus ciduis atummy nos nonullaor accum ipis doloborem nonsequi eriustrud
molobore vel dolore tie magna aut ad eugue duipis dip exero odit eliquat lummodit la
faccumsan ercipis adit doluptat ad dionse et, sisi.
Ed moluptat veniat. An utet augait lore dolorting eum esectem adigna accum vel irilla
conullum ilit, susci bla am ametum dit, quis num quat. Olestissi tat utationsed tat. Duis
adipsuscilit nulpute ea feum nos amconsent dolorem dolore veraesto dionse dio exer
ing eugait nostio enismodipit lorer sit ver sed do del utat ipit eliqui ea feu facin utpat.
Xeros ad molorer cillandignis dolobore consed do odolorpero exer sectetummy nulputat
nostrud molore conulput volesse magna faccum volor si enim zzrilit aliquiscilis alisl
inim voloborperci euguero dionsed eum zzrit, cor il ilit ut vel il dip eum digna facin
ullaortie conulpute commod ex ero od modo dolorper si.
Volore eugait utpatem ea feummy nulla faci enim nibh eum eu facidunt alit ent lut
lorperos nonulput autpatet, se voluptatem veros nisim velit lutat velessenibh eugait
inim zzrilit iriurer aestrud essit adipiscidunt eugiat adigna accummo lessit iure
modiamc onummy nos nos accummod magna facing eugait la augiat. Equatem dipit
lam zzriustrud ercidui sciduipit la feuguercil dipit essit iurem deliquam dit volestrud
mincing eugiat.

A concise introduction to Mata’s facilities and a number of “cookbook
examples” of its use are provided in chapters 13–14 of my book An
Introduction to Stata Programming, soon to be published by Stata
Press.

Christopher F Baum (Boston College) Why become a Stata programmer? 54 / 55

Final thoughts

Final thoughts

I hope that these illustrations of Stata programming have convinced
you that improving your understanding of a few key concepts will give
you the tools to make better use of Stata’s capabilities. Most Stata
users will develop some facility with do-files; a smaller number will
author their own ado-files, and a small fraction of users may learn how
to use Mata in conjunction with ado-files.

Whatever your level of sophistication, you can benefit by gaining a
better understanding of a basic notion: Stata is not merely a statistical
package, but a statistical programming language, and using it
efficiently will save you time and improve the reliability of your work.

Christopher F Baum (Boston College) Why become a Stata programmer? 55 / 55

Final thoughts

Final thoughts

I hope that these illustrations of Stata programming have convinced
you that improving your understanding of a few key concepts will give
you the tools to make better use of Stata’s capabilities. Most Stata
users will develop some facility with do-files; a smaller number will
author their own ado-files, and a small fraction of users may learn how
to use Mata in conjunction with ado-files.

Whatever your level of sophistication, you can benefit by gaining a
better understanding of a basic notion: Stata is not merely a statistical
package, but a statistical programming language, and using it
efficiently will save you time and improve the reliability of your work.

Christopher F Baum (Boston College) Why become a Stata programmer? 55 / 55

	Should you become a Stata programmer?
	Introduction
	Using do-files
	Writing your own ado-files
	Writing Mata subroutines for ado-files

	Tools for do-file authors
	Looping over observations is rarely appropriate
	The by prefix can often replace a loop
	Repeated statements are usually not needed
	Merge can solve concordance problems
	Some simple commands are often overlooked
	egen functions can solve many programming problems
	Learn how to use return and ereturn
	The local macro
	forvalues and foreach
	extended macro functions, list functions, levelsof
	estimates and estout

	Ado-file programming: a primer
	The program statement
	The syntax statement

	Mata subroutines for ado-files
	Shameless advert
	Final thoughts

