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Infectious disease models are powerful tools for prediction
and policy.
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They have benefits...
Infectious disease models

The Good

• Careful consideration of
data-generating processes

• Make the most of
limited/uncertain data

• Forward-looking

The Bad

Typically scale effects from
small or mechanistic studies
Often overly optimistic about
the costs and effects of
real-world programs
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...and drawbacks.

Infectious disease models

The Good

Careful consideration of
data-generating processes
Make the most of
limited/uncertain data

The Bad
• Typically scale effects from

small or mechanistic studies
• Often overly optimistic about

the costs and effects of
real-world programs

Salomon (2019):
We need “systematic reevaluation
of the cost-effectiveness literature

with reference to ex-post
empirical evidence on costs and
effects in real-world programs.”

3



Observational causal inference methods can help.

Difference-in-differences

Synthetic control methods

Regression discontinuity

Instrumental variable methods
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Observational causal inference methods can help.

Observational causal inference

The Good
• Leverage real-world

“exogenous” variation
• Empirical counterfactuals from

untreated units

The Bad

Usually assume linear
data-generating processes
More willing to cop out given
uncertainty
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They have their own drawbacks.
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My work: Take the best of both worlds.

Infectious disease models
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• Careful consideration of
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My work: Take the best of both worlds.

Infectious disease models

The Good
• Careful consideration of

data-generating processes
• Make the most of

limited/uncertain data

Observational causal inference

The Good
• Leverage real-world

“exogenous” variation
• Empirical counterfactuals from

untreated units

We develop comprehensive theoretical architecture for
conducting observational policy evaluation and transporting results
to inform projections. We also support its implementation in
public health practice.
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Difference-in-differences (DiD) for infectious disease outcomes

Shuo Feng
PhD Candidate, Biostatistics

Supported in part by the Centers for
Disease Control and Prevention though
the Council of State and Territorial
Epidemiologists (NU38OT000297-02)
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DiD Background

DiD specifications

Power

Examples

Discussion
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DiD is popular.
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Especially among Stata users!
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About DiD

Parallel trends assumption (PTA): Treatment and comparison
units were moving in parallel pre-intervention, and would have
continued to do so absent the intervention (untestable).
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DiD became even more popular during COVID-19.

Stay-at-home orders
(Callaway & Li, 2023)

Social distancing
(Courtemanche et. al, 2020)

Mask mandates
(Mitze et. al, 2020)

Contact tracing
(Fetzer & Graeber, 2021)

School mask mandates
(Cowger, et. al 2022)

School reopenings
(Chernozhukov, et. al. 2021)
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COVID-19 policy evaluation

There was a lot of disagreement on how to use DiD to evaluate
COVID-19 incidence and mortality:

• incidence
• with matching
• with synthetic controls

• log(incidence)
• log(incidence growth rate)
• log/log models
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Do infectious disease dynamics mess up DiD?

Why do we trust that trends are parallel, even if levels may differ?

• DiD is appealing because it allows researchers to estimate
treatment effects, even absent comparison groups that exactly
match the treatment group.

• But it’s hard to know what the PTA confers about underlying
data-generating processes.

• Infectious disease is a context with sufficiently deep theory to
precisely interpret the PTA.

DiD Background 14



Do infectious disease dynamics mess up DiD?

Why do we trust that trends are parallel, even if levels may differ?

• DiD is appealing because it allows researchers to estimate
treatment effects, even absent comparison groups that exactly
match the treatment group.

• But it’s hard to know what the PTA confers about underlying
data-generating processes.

• Infectious disease is a context with sufficiently deep theory to
precisely interpret the PTA.

DiD Background 14



Do infectious disease dynamics mess up DiD?

Why do we trust that trends are parallel, even if levels may differ?

• DiD is appealing because it allows researchers to estimate
treatment effects, even absent comparison groups that exactly
match the treatment group.

• But it’s hard to know what the PTA confers about underlying
data-generating processes.

• Infectious disease is a context with sufficiently deep theory to
precisely interpret the PTA.

DiD Background 14



Do infectious disease dynamics mess up DiD?

Why do we trust that trends are parallel, even if levels may differ?

• DiD is appealing because it allows researchers to estimate
treatment effects, even absent comparison groups that exactly
match the treatment group.

• But it’s hard to know what the PTA confers about underlying
data-generating processes.

• Infectious disease is a context with sufficiently deep theory to
precisely interpret the PTA.

DiD Background 14



Objectives

What must we assume about treatment and comparison
transmission dynamics for different DiD specifications to work well?

1. Formalize assumptions of different specifications from an
epidemiological perspective

2. Propose robust alternatives guided by a structural framework
3. Characterize power trade-offs
4. Re-analyze published examples
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Approach

1. Define an SIR transmission dynamic data-generating process
for treatment and comparison units.

2. Set up two-period, two-unit DiD model.
3. Formally derive mathematical conditions required for the PTA

to hold in closed-form for different model specifications.
4. Interpret these in practical terms.

DiD specifications 17
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SIR model

We work with a stochastic SIR model. Assuming initial conditions
𝑆0, 𝐼0, 𝑅0, for 𝑡 > 0:

𝐼∗
𝑡+1 ∼ 𝑃𝑜𝑖𝑠 (𝜇𝑡 = 𝛽𝑡𝑆𝑡

𝐼𝑡
𝑁 )

𝑆𝑡+1 = 𝑆𝑡 − 𝐼∗
𝑡+1

𝐼𝑡+1 = (1 − 𝛾)𝐼𝑡 + 𝐼∗
𝑡+1

𝑅𝑡+1 = 𝑅𝑡 + 𝛾𝐼𝑡

We assume 𝐼∗
𝑡+1 is Poisson distributed, but most results hold for

any distribution with mean 𝜇𝑡.
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SIR assumptions

1. Closed, stable population of 𝑁 individuals
2. Homogeneous mixing and transmission: 𝛽𝑡

𝐼𝑡
𝑁 constant across

individuals

DiD specifications 19



Difference-in-differences

Assume a canonical DiD setup with two units, 𝐷 = {0, 1}, and two
time periods, 𝑇 = {𝑡1, 𝑡2}, with unit 1 treated at time 𝑡2. Let 𝑌𝑑,𝑡
be the outcome of unit 𝑑 at time 𝑡.

𝐴𝑇 𝑇 = 𝔼 [𝑌1,𝑡2
(1) − 𝑌1,𝑡2

(0)]

To estimate this, we define the parallel trends assumption:

𝑔 (𝔼 [𝑌1,𝑡2
(0)]) − 𝑔 (𝔼 [𝑌1,𝑡1

(0)])
=

𝑔 (𝔼 [𝑌0,𝑡2
(0)]) − 𝑔 (𝔼 [𝑌0,𝑡1

(0)]) ,

where 𝑔(.) is continuous and monotonic.
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Model specifications

The parallel trends assumption is usually sensitive to functional
form (Roth & Sant’Anna (2023)).

Specification Definition Frequencyi

Incidence 𝐼∗
𝑑,𝑡 17/29 (59%)

Log incidence log(𝐼∗
𝑑,𝑡) 10/29 (34%)

Log growth log ( 𝐼∗
𝑑,𝑡

𝐼∗
𝑑,𝑡

) 2/29 (7%)

i Literature Review: all COVID-19 DiD analyses published in JAMA network journals, New England Journal of
Medicine, PNAS, Nature Research journals, Lancet, Health Affairs, and Health Economics from 2020-2022.
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Specifications

What would we have to assume about transmission dynamics
under an SIR data-generating process for the PTA to hold?

Assumptions: Treatment vs. comparison parameters

Specification Outcome Link Susceptible Initial Effective
population infections contact rates

𝑔(.) (𝑆𝑑,0) 𝔼 [𝑌𝑑,𝑡1 ] (𝛽𝑑,𝑡1−1, ..., 𝛽𝑑,𝑡2−1)

Incidence 𝑌𝑑,𝑡 = 𝐼∗
𝑑,𝑡 identity

Log incidence 𝑌𝑑,𝑡 = 𝐼∗
𝑑,𝑡 log

Log growth 𝑌𝑑,𝑡 =
𝔼[𝐼∗

𝑑,𝑡]
𝔼[𝐼∗

𝑑,𝑡−1]
log

text

text
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Incidence

𝑔 (𝔼 [𝑌𝑑,𝑡)]) = 𝔼 (𝐼∗
𝑑,𝑡)

Base case: 𝐼0 = 50, 𝑆0
𝑁 ≈ 1, 𝑅0 = 𝛽

𝛾 = 1.6

Formal conditions and derivation
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Log incidence

𝑔 (𝔼 [𝑌𝑑,𝑡)]) = log (𝔼 [𝐼∗
𝑑,𝑡])

Formal conditions and derivation Log transformations
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Log growth

𝑔 (𝔼 [𝑌𝑑,𝑡)]) = log ( 𝔼[𝐼∗
𝑗,𝑡]

𝔼[𝐼∗
𝑗,𝑡−1]))

Formal conditions and derivation
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Log 𝑅𝑡

But...log growth approximates log 𝑅𝑡! Definition

𝑔 (𝔼 [𝑌𝑑,𝑡)]) = log (𝔼 [𝑅𝑑,𝑡])

Formal conditions and derivation
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Log 𝛽𝑡

And then, why not model 𝛽𝑡 directly?
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ATT interpretations

⟶ We can also transform to average marginal effects.

Return
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Inference
We conduct inference using the wild score bootstrap a
generalization of the wild cluster bootstrap, which performs well
with a small number of clusters.

Key idea: In boostrap replicates, re-weight the score
distribution based on an auxiliary cluster-level random
variable with mean 0 and variance 1.

Return
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More complex models

I have never published an SIR model.

• Nearly all infectious disease models nest SIR models.
• SEIR models: additional exposed state
• Agent-based models: heterogeneity in individual agents

• In more complex models, there is no closed-form solution
(requires exactly equality).

• But often SIR is a decent approximation (defaults to our
propositions above).

DiD specifications 30



More complex models

I have never published an SIR model.
• Nearly all infectious disease models nest SIR models.

• SEIR models: additional exposed state
• Agent-based models: heterogeneity in individual agents

• In more complex models, there is no closed-form solution
(requires exactly equality).

• But often SIR is a decent approximation (defaults to our
propositions above).

DiD specifications 30



More complex models

I have never published an SIR model.
• Nearly all infectious disease models nest SIR models.

• SEIR models: additional exposed state
• Agent-based models: heterogeneity in individual agents

• In more complex models, there is no closed-form solution
(requires exactly equality).

• But often SIR is a decent approximation (defaults to our
propositions above).

DiD specifications 30



More complex models

I have never published an SIR model.
• Nearly all infectious disease models nest SIR models.

• SEIR models: additional exposed state
• Agent-based models: heterogeneity in individual agents

• In more complex models, there is no closed-form solution
(requires exactly equality).

• But often SIR is a decent approximation (defaults to our
propositions above).

DiD specifications 30



Summary

Popular DiD specifications encode strong assumptions.
• Incidence requires identical expected outcome trajectories.
• Log incidence or log growth allows for different initial conditions

under an “infinite susceptible population” assumption, but
nevertheless requires strict conditions in transmission parameters.

𝑅𝑡 and 𝛽𝑡
• Draw on fundamental epidemiological quantities
• More flexible than the established outcome specifications
• Can be estimated via MLE under SIR or with Wallinga-Teunis

estimator under more complex transmission frameworks

ATT interpretations Average marginal effects Time step aggregation

Multiple units and time periods 𝑅𝑡 and 𝛽𝑡 estimation Inference
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Power

What is the cost of using a more robust model?

We ran simulations, generating data from an SIR model. Key input
parameters:

• Ratio of 𝛽𝑡 (the baseline effective contact rate) between
treated and control groups: {1.0, 1.1}

• Effect size: 0.7-1.3 (a multiplicative factor on 𝛽𝑡)

We run each model and conduct inference with the wild score
bootstrap, clustering at the unit level.

All parameters
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Power (PTA holds for all outcome specifications)

All plots (𝑅0 = 1) All plots (𝑅0 = 1.15)
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Power (𝛽𝑡 differs across treatment and comparison groups)

𝑅0 = 1 𝑅0 = 1.15

All plots (𝑅0 = 1) All plots (𝑅0 = 1.15)
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Summary

1. Use log by default: Modeling log incidence does not
substantially reduce power compared to modeling incidence.

2. Log 𝑅𝑡 and log 𝛽𝑡 have greater power than log growth.
3. Beware susceptible depletion. With non-trivial susceptible

depletion, only log 𝛽𝑡 could handle differences in effective
contact rates.
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School masking in Massachusetts

• On February 28, 2022,
Massachusetts lifted the
school state-level
masking requirement.

• 2 districts did not lift
mandates until June.
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School masking in Massachusetts

Follow-up Outcome ATT Average marginal
time specification (95% CI) effect (95% CI)

Incidence 48.1∗ (38.9, 57.1) 48.1∗ (38.9, 57.1)
15 weeks Log incidence 1.19 (0.90, 1.57) 13.0 (−31.3, 47.1)

Log growth 0.89 (0.70, 1.13) −71.4 (−3036.0, 120.5)

Incidence 8.6∗ (5.7, 11.5) 8.6∗ (5.7, 11.5)
5 weeks Log incidence 1.62∗ (1.26, 2.09) 6.9∗ (1.8, 10.8)

Log growth 0.97 (0.77, 1.22) 8.6 (−10.9, 16.6)
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Kansas mask mandates

• On July 3, 2020, Kansas
passed an an executive
order requiring masks.

• This was initially adopted
only in 15 counties.
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Kansas mask mandates

Outcome ATT Average marginal
specification (95% CI) effect (95% CI)

Incidence −21.6∗ (−28.3, − 14.8) −21.6∗ (−28.3, − 14.8)
Log incidence 0.33∗ (0.22, 0.59) −55.1∗ (−101.2, − 19.1)
Log growth 0.96 (0.74, 1.25) −9.5 (−2139.8, 25.3)

Log 𝑅𝑡 0.97 (0.90, 1.05) −6.1 (−22.2, 8.3)
Log 𝛽𝑡 0.95† (0.86, 1.01) −10.8† (−36.0, 2.6)
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Contributions

1. Make explicit epidemiological assumptions embedded in
popular DiD specifications with infectious disease outcomes

2. Propose robust specifications that can be generalized to more
complex transmission dynamics

3. Characterize the bias-variance trade-off (e.g., logs as default)
4. Show that these differences are practically meaningful
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How do we use observational estimates?

We estimate a 3-5% reduction in 𝛽𝑡 from masking. How does this
help us make future projections?

1. Change benchmarks: 5-10% vs. 50-90%.
2. Improve model calibration: adherence? transmission location?
3. Guide data collection to inform context-specific updates.
4. Incorporate non-infectious disease outcomes.

⟶ Cycles of projections and evaluation

Discussion 45
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Extensions to this work
Alternative causal inference methods

• Infectious disease dynamics are uniquely punishing!
• Synthetic control methods, regression discontinuity, spillovers

Uncertainty
• If we require 𝑝 < 0.05, it will be hard to act.
• Decision analytic methods for quantifying uncertainty
• Reduce researcher degrees of freedom (e.g., pre-analysis plans)

Applications
• CHAI: evaluation of malaria control efforts
• RIDOH: triggers for nursing home interventions
• NYC Health: framework for emergency policy evaluation
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Thank you!

Feel free to reach out: alyssa_bilinski@brown.edu (especially if you
are a Stata developer). Questions?
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Expected incidence (SIR)

Proposition (Expected incidence)
Assuming an SIR data-generating process with initial conditions {𝑆𝑑,0, 𝐼𝑑,0, 𝑅𝑑,0},
expected incidence at times 𝑡 + 1 can be written:

𝔼 [𝐼∗
𝑑,𝑡+1] = 𝛽𝑑,𝑡

𝑁 (𝑆𝑑,0 + (1 − 𝛾)
𝛽𝑑,𝑡−1

) 𝔼 [𝐼∗
𝑑,𝑡] − 𝜖𝑡,

where 𝜖𝑡 = (1 − 𝛾)𝔼 [𝐼𝑑,𝑡−1𝐼∗
𝑑,𝑡] − ∑𝑡

𝑗=1 𝔼 [𝐼∗
𝑑,𝑡𝐼∗

𝑑,𝑗].

This result suggests that even with 𝑡1 and 𝑡2 as adjacent time-steps, we cannot straightforwardly write
𝔼 [𝐼∗

𝑑,𝑡+1] as an additive or multiplicative function of 𝔼 [𝐼∗
𝑑,𝑡+1], implying a requirement of equivalent

data-generating processes for the parallel trends assumption to hold with incidence or a log transformation.

𝑆𝑑,0 → ∞
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Expected incidence (SIR infinite population)

Proposition (Expected incidence (infinite susceptible
population))
Assuming an SIR data-generating process, with initial conditions {𝑆0, 𝐼0, 𝑅0}, for
𝑡 ≥ 1,

𝐸 [ lim
𝑆𝑑,0→∞

𝐼∗
𝑑,𝑡+1] = 𝛽𝑑,𝑡

𝑡−1
∏
𝑘=0

(1 − 𝛾 + 𝛽𝑑,𝑘) 𝐼𝑑,0

= lim
𝑆𝑑,0→∞

𝐸 [𝐼∗
𝑑,𝑡+1]

𝑆𝑑,0 → ∞
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Incidence: Exponential model

Recall 𝐼∗
𝑗,𝑔 = 𝐼𝑗,0𝑟𝑔

𝑗 . The parallel trends assumption holds when:

𝔼 [𝑌1,𝑡2
(0) − 𝑌1,𝑡1

(0)] = 𝔼 [𝑌0,𝑡2
(0) − 𝑌0,𝑡1

(0)] ⟺
𝐼1,0 (𝑟𝑡2

1 − 𝑟𝑡1
1 ) = 𝐼0,0 (𝑟𝑡2

0 − 𝑟𝑡1
0 ) ⟺

𝑌1,𝑡1
(𝑟1

𝑡2−𝑡1 − 1) = 𝑌0,𝑡1
(𝑟0

𝑡2−𝑡1 − 1)
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Incidence

Proposition (Parallel trends: Incidence)
Assuming an SIR data-generating process and an incidence model specification
(𝑌𝑑,𝑡 = 𝐼∗

𝑑,𝑡, 𝑔(𝑦) = 𝑦), the “infinite susceptible population” parallel trends
assumption holds between 𝑡1 and 𝑡2 under the following conditions:

lim
𝑆1,0→∞

(𝔼 [𝑌1,𝑡2 (0)] − 𝔼 [𝑌1,𝑡1 (0)] ) = lim
𝑆0,0→∞

(𝔼 [𝑌0,𝑡2 (0)] − 𝔼 [𝑌0,𝑡1 (0)] ) ⟺

𝛽∗
1,0,𝑡1 𝐼1,0 (𝛽∗

1,𝑡1,𝑡2 − 1) = 𝛽∗
0,0,𝑡1 𝐼0,0 (𝛽∗

0,𝑡1,𝑡2 − 1) ,

where 𝛽∗
𝑑,0,𝑡1 = 𝛽𝑑,𝑡1−1

𝑡1−2
∏
𝑘=0

(1 − 𝛾 + 𝛽𝑑,𝑘) ,

𝛽∗
𝑑,𝑡1,𝑡2 =

𝛽𝑑,𝑡2−1
𝛽𝑑,𝑡1−1

𝑡2−2
∏

𝑘=𝑡1−1
(1 − 𝛾 + 𝛽𝑑,𝑘)

Return
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Incidence

Proposition (Parallel trends: Incidence)
Assuming an SIR data-generating process and an incidence model specification
(𝑌𝑑,𝑡 = 𝐼∗

𝑑,𝑡, 𝑔(𝑦) = 𝑦), the “infinite susceptible population” parallel trends
assumption holds between 𝑡1 and 𝑡2 under the following conditions:

lim
𝑆1,0→∞

(𝔼 [𝑌1,𝑡2 (0)] − 𝔼 [𝑌1,𝑡1 (0)] ) = lim
𝑆0,0→∞

(𝔼 [𝑌0,𝑡2 (0)] − 𝔼 [𝑌0,𝑡1 (0)] ) ⟺

𝛽∗
1,0,𝑡1 𝐼1,0 (𝛽∗

1,𝑡1,𝑡2 − 1) = 𝛽∗
0,0,𝑡1 𝐼0,0 (𝛽∗

0,𝑡1,𝑡2 − 1) ,

where 𝛽∗
𝑑,0,𝑡1 = 𝛽𝑑,𝑡1−1

𝑡1−2
∏
𝑘=0

(1 − 𝛾 + 𝛽𝑑,𝑘) ,

𝛽∗
𝑑,𝑡1,𝑡2 =

𝛽𝑑,𝑡2−1
𝛽𝑑,𝑡1−1

𝑡2−2
∏

𝑘=𝑡1−1
(1 − 𝛾 + 𝛽𝑑,𝑘)

Return
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Incidence

Proposition (Parallel trends: Incidence)
Assuming an SIR data-generating process and an incidence model specification
(𝑌𝑑,𝑡 = 𝐼∗

𝑑,𝑡, 𝑔(𝑦) = 𝑦), the “infinite susceptible population” parallel trends
assumption holds between 𝑡1 and 𝑡2 under the following conditions:

lim
𝑆1,0→∞

(𝔼 [𝑌1,𝑡2 (0)] − 𝔼 [𝑌1,𝑡1 (0)] ) = lim
𝑆0,0→∞

(𝔼 [𝑌0,𝑡2 (0)] − 𝔼 [𝑌0,𝑡1 (0)] ) ⟺

𝔼 [𝐼∗
1,𝑡1 ] (𝛽∗

1,𝑡1,𝑡2 − 1) = 𝔼 [𝐼∗
0,𝑡1 ] (𝛽∗

0,𝑡1,𝑡2 − 1) ,

where 𝛽∗
𝑑,𝑡1,𝑡2 =

𝛽𝑑,𝑡2−1
𝛽𝑑,𝑡1−1

𝑡2−2
∏

𝑘=𝑡1−1
(1 − 𝛾 + 𝛽𝑑,𝑘)

Return
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Proof.
For 𝑡1, 𝑡2 ≥ 2 and 𝑑 ∈ {0, 1}, we have:

lim
𝑆𝑑,0→∞

(𝔼 [𝑌𝑑,𝑡2 (0)] − 𝔼 [𝑌𝑑,𝑡1 (0)] )

Substituting from Proposition 2 ⟶

=𝛽𝑑,𝑡2−1
𝑡2−2
∏

𝑘=0
(1 − 𝛾 + 𝛽𝑑,𝑘) 𝐼𝑑,0 − 𝛽𝑑,𝑡1−1

𝑡1−2
∏

𝑘=0
(1 − 𝛾 + 𝛽𝑑,𝑘) 𝐼𝑑,0

Rearranging terms ⟶

=𝐼𝑑,0
𝑡1−2
∏

𝑘=0
(1 − 𝛾 + 𝛽𝑑,𝑘) ⎛⎜

⎝
𝛽𝑑,𝑡2−1

𝑡2−2
∏

𝑘=𝑡1−1
(1 − 𝛾 + 𝛽𝑑,𝑘) − 𝛽𝑑,𝑡1−1⎞⎟

⎠
Collecting terms ⟶

=𝛽∗
𝑑,0,𝑡1 𝐼𝑑,0 (𝛽∗

𝑑,𝑡1,𝑡2 − 1) ,

where 𝛽∗
𝑑,0,𝑡1 =𝛽𝑑,𝑡1−1

𝑡1−2
∏

𝑘=0
(1 − 𝛾 + 𝛽𝑑,𝑘) , 𝛽∗

𝑑,𝑡1,𝑡2 =
𝛽𝑑,𝑡2−1
𝛽𝑑,𝑡1−1

𝑡2−2
∏

𝑘=𝑡1−1
(1 − 𝛾 + 𝛽𝑑,𝑘)

Substituting the above expression into the parallel trends condition, we obtain a:

𝐿𝐻𝑆 = lim
𝑆1,0→∞

𝔼 [𝑌1,𝑡2 (0) − 𝑌1,𝑡1 (0)] = 𝛽∗
1,0,𝑡1 𝐼1,0 (𝛽∗

1,𝑡1,𝑡2 − 1) , and

𝑅𝐻𝑆 = lim
𝑆0,0→∞

𝔼 [𝑌0,𝑡2 (0) − 𝑌0,𝑡1 (0)] = 𝛽∗
0,0,𝑡1 𝐼0,0 (𝛽∗

0,𝑡1,𝑡2 − 1)

aNote that in the special case of constant exponential growth,
𝑌𝑑,𝑡 = 𝐼𝑑,0𝛽𝑡, this condition reduces to
𝑌1,𝑡1 (𝛽𝑡2−𝑡1 − 1) = 𝑌0,𝑡1 (𝛽𝑡2−𝑡1 − 1).
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Log incidence

Proposition (Parallel trends: Log incidence)
Assuming an SIR data-generating process and a log incidence model specification (𝑌𝑑,𝑡 = 𝐼∗

𝑑,𝑡, 𝑔(⋅) = log(⋅)),
the “infinite susceptible population” parallel trends assumption holds between 𝑡1 and 𝑡2 under the following
conditions:

lim
𝑆1,0→∞

log (𝔼 [𝑌1,𝑡2 (0)]) − log (𝔼 [𝑌1,𝑡1 (0)]) = lim
𝑆0,0→∞

log (𝔼 [𝑌0,𝑡2 (0)]) − log (𝔼 [𝑌0,𝑡1 (0)])

⟺
𝛽∗

1,𝑡1,𝑡2 = 𝛽∗
0,𝑡1,𝑡2 ,

where 𝛽∗
𝑑,𝑡1,𝑡2 =

𝛽𝑑,𝑡2−1
𝛽𝑑,𝑡1−1

𝑡2−2
∏

𝑘=𝑡1−1
(1 − 𝛾 + 𝛽𝑑,𝑘)
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Proof.
For 𝑡1, 𝑡2 ≥ 2 and 𝑑 ∈ {0, 1}, we expand as follows:

lim
𝑆𝑑,0→∞

log (𝔼 [𝑌𝑑,𝑡2 (0)]) − log (𝔼 [𝑌𝑑,𝑡1 (0)])

Substituting in from Proposition 2 ⟶

= log ⎛⎜
⎝

𝛽𝑑,𝑡2−1
𝑡2−2
∏

𝑘=0
(1 − 𝛾 + 𝛽𝑑,𝑘) 𝐼𝑑,0⎞⎟

⎠
− log ⎛⎜

⎝
𝛽𝑑,𝑡1−1

𝑡1−2
∏

𝑘=0
(1 − 𝛾 + 𝛽𝑑,𝑘) 𝐼𝑑,0⎞⎟

⎠
Dividing out common terms ⟶

= log ⎛⎜
⎝

𝛽𝑑,𝑡2−1
𝛽𝑑,𝑡1−1

𝑡2−2
∏

𝑘=𝑡1−1
(1 − 𝛾 + 𝛽𝑑,𝑘)⎞⎟

⎠
= log (𝛽∗

𝑑,𝑡1,𝑡2 )

Therefore, the “infinite susceptible population” parallel trends assumption (Eq. ??) holds if and only if

lim
𝑆1,0→∞

log (𝔼 [𝑌1,𝑡2 ]) − log (𝔼 [𝑌1,𝑡1 ]) = lim
𝑆0,0→∞

log (𝔼 [𝑌0,𝑡2 ]) − log (𝔼 [𝑌0,𝑡1 ]) ⟺

log (𝛽∗
1,𝑡1,𝑡2 ) = log (𝛽∗

0,𝑡1,𝑡2 ) ⟺

𝛽∗
1,𝑡1,𝑡2 = 𝛽∗

0,𝑡1,𝑡2
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Log transformations

We can approximate 𝔼 [log(𝐼∗
𝑑,𝑡)] with a second-order Taylor series expansion:

𝔼 [log(𝐼∗
𝑑,𝑡)] ≈ log (𝔼(𝐼∗

𝑡)) −
𝑉 𝑎𝑟(𝐼∗

𝑑,𝑡)
2𝔼(𝐼𝑑,𝑡)∗2

≈ log (𝔼(𝐼∗
𝑡)) − 1

2𝔼(𝐼𝑑,𝑡)
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Parallel trends: Log incidence

Proposition (Parallel trends: Log growth)
Assuming an SIR data-generating process and a log growth model specification

(𝑌𝑑,𝑡 =
𝔼[𝐼∗

𝑑,𝑡]
𝔼[𝐼∗

𝑑,𝑡−1]
, 𝑔(⋅) = log(⋅)), the “infinite susceptible population” parallel trends assumption holds

between 𝑡1 and 𝑡2 under the following conditions:

lim
𝑆1,0→∞

( log (𝔼 [𝑌1,𝑡2 (0)]) − log (𝔼 [𝑌1,𝑡1 (0)]) ) =

lim
𝑆0,0→∞

( log (𝔼 [𝑌0,𝑡2 (0)]) − log (𝔼 [𝑌0,𝑡1 (0)]) ) ⟺

log (
𝛽1,𝑡2−1
𝛽1,𝑡1−1

) − log (
𝛽1,𝑡2−2
𝛽1,𝑡1−2

) + log (
1 − 𝛾 + 𝛽1,𝑡2−2
1 − 𝛾 + 𝛽1,𝑡1−2

) =

log (
𝛽0,𝑡2−1
𝛽0,𝑡1−1

) − log (
𝛽0,𝑡2−2
𝛽0,𝑡1−2

) + log (
1 − 𝛾 + 𝛽0,𝑡2−2
1 − 𝛾 + 𝛽0,𝑡1−2

)
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Proof.
For 𝑡1, 𝑡2 ≥ 2 and 𝑑 ∈ {0, 1}, we have:

lim
𝑆𝑑,0→∞

log (𝔼 [𝑌𝑑,𝑡2 ])

Substituting in from Proposition 2 ⟶

= log ⎛⎜
⎝

𝛽𝑑,𝑡2−1
𝑡2−2
∏

𝑘=1
(1 − 𝛾 + 𝛽𝑑,𝑘) 𝐼𝑑,0⎞⎟

⎠
− log ⎛⎜

⎝
𝛽𝑑,𝑡2−2

𝑡2−3
∏

𝑘=1
(1 − 𝛾 + 𝛽𝑑,𝑘) 𝐼𝑑,0⎞⎟

⎠
Simplifying ⟶

= log (
𝛽𝑑,𝑡2−1
𝛽𝑑,𝑡2−2

(1 − 𝛾 + 𝛽𝑑,𝑡2−2))

Similarly, log (𝔼 [𝑌𝑑,𝑡1 ]) = log (
𝛽𝑑,𝑡1−1
𝛽𝑑,𝑡1−2

(1 − 𝛾 + 𝛽𝑑,𝑡1−2)).
Therefore,

lim
𝑆𝑑,0→∞

log (𝔼 [𝑌𝑑,𝑡2 ]) − log (𝔼 [𝑌𝑑,𝑡1 ])

Substituting from above ⟶

= log (
𝛽𝑑,𝑡2−1
𝛽𝑑,𝑡2−2

(1 − 𝛾 + 𝛽𝑑,𝑡2−2)) − log (
𝛽𝑑,𝑡1−1
𝛽𝑑,𝑡1−2

(1 − 𝛾 + 𝛽𝑑,𝑡1−2))

Rearranging terms ⟶

= log (
𝛽𝑑,𝑡2−1
𝛽𝑑,𝑡1−1

) − log (
𝛽𝑑,𝑡2−2
𝛽𝑑,𝑡1−2

) + log (
1 − 𝛾 + 𝛽𝑑,𝑡2−2
1 − 𝛾 + 𝛽𝑑,𝑡1−2

)

Substituting the above equation back to both sides of the parallel trends assumption completes the proof. 59



Definition of 𝑅𝑡

Proposition (Cohort definition of 𝑅𝑡)
Assume that the effective reproduction number is measured over a generation interval of length 1

𝛾 for the cohort
𝐼∗

𝑡 becoming infectious at time 𝑡. We define the cohort effective reproduction number:

𝑅𝑑,𝑡 =
∞
∑
𝑗=𝑡

(1 − 𝛾)𝑗−𝑡 𝛽𝑑,𝑗
𝑆𝑑,𝑗

𝑁

.

Return
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Definition of 𝑅𝑡

Proposition (Cohort definition of 𝑅𝑡)
Assume that the effective reproduction number is measured over a generation interval of length 1

𝛾 for the cohort
𝐼∗

𝑡 becoming infectious at time 𝑡. We define the cohort effective reproduction number:

𝑅𝑑,𝑡 =
∞
∑
𝑗=𝑡

(1 − 𝛾)𝑗−𝑡 𝛽𝑑,𝑗
𝑆𝑑,𝑗

𝑁

.
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Parallel trends: Log 𝑅𝑡

Proposition (Parallel trends: Log 𝑅𝑡)
Assuming an SIR data-generating process, log-transformed effective reproduction number model specification
(𝑌𝑑,𝑡 = log (𝑅𝑑,𝑡) , 𝑔(⋅) = log(⋅)), the “infinite susceptible population” parallel trends assumption holds for all
𝑡1, 𝑡2 > 𝑡 − 1 if and only if

lim
𝑆1,0→∞

log (𝔼 [𝑌1,𝑡2 (0)]) − log (𝔼 [𝑌1,𝑡1 (0)]) = lim
𝑆0,0→∞

log (𝔼 [𝑌0,𝑡2 (0)]) − log (𝔼 [𝑌0,𝑡1 (0)]) ⟺

log ⎛⎜⎜
⎝

∑∞
𝑗=𝑡2

(1 − 𝛾)𝑗−𝑡2 𝛽1,𝑗

∑∞
𝑗=𝑡1

(1 − 𝛾)𝑗−𝑡1 𝛽1,𝑗

⎞⎟⎟
⎠

= log ⎛⎜⎜
⎝

∑∞
𝑗=𝑡2

(1 − 𝛾)𝑗−𝑡2 𝛽0,𝑗

∑∞
𝑗=𝑡1

(1 − 𝛾)𝑗−𝑡1 𝛽0,𝑗

⎞⎟⎟
⎠
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Proof.
In Proposition 9, we defined 𝑅𝑡 = 𝑅𝑑,𝑡 = ∑∞

𝑗=𝑡 (1 − 𝛾)𝑗−𝑡 𝛽𝑑,𝑗
𝑆𝑑,𝑗

𝑁 . Substituting this formulation of 𝑅𝑡
into the parallel trends assumption, we obtain:

lim
𝑆1,0→∞

log (𝔼 [𝑌1,𝑡+1(0)]) − log (𝔼 [𝑌1,𝑡(0)]) = lim
𝑆0,0→∞

log (𝔼 [𝑌0,𝑡+1(0)]) − log (𝔼 [𝑌0,𝑡(0)]) ⟺

lim
𝑆1,0→∞

log (𝑅1,𝑡+1) − log (𝑅1,𝑡) = lim
𝑆0,0→∞

log (𝑅0,𝑡+1) − log (𝑅0,𝑡) ⟺

lim
𝑆1,0→∞

log (
𝑅1,𝑡2
𝑅1,𝑡1

) = lim
𝑆0,0→∞

log (
𝑅0,𝑡2
𝑅0,𝑡1

) ⟺

Substituting from Proposition 9 ⟶

lim
𝑆1,0→∞

log ⎛⎜⎜
⎝

∑∞
𝑗=𝑡2

(1 − 𝛾)𝑗−𝑡2 𝛽1,𝑗𝑆1,𝑗

∑∞
𝑗=𝑡1

(1 − 𝛾)𝑗−𝑡1 𝛽1,𝑗𝑆1,𝑗

⎞⎟⎟
⎠

= lim
𝑆0,0→∞

log ⎛⎜⎜
⎝

∑∞
𝑗=𝑡2

(1 − 𝛾)𝑗−𝑡2 𝛽0,𝑗𝑆0,𝑗

∑∞
𝑗=𝑡1

(1 − 𝛾)𝑗−𝑡1 𝛽0,𝑗𝑆0,𝑗

⎞⎟⎟
⎠

⟺

Taking limits ⟶

log ⎛⎜⎜
⎝

∑∞
𝑗=𝑡2 (1 − 𝛾)𝑗−𝑡2 𝛽1,𝑗

∑∞
𝑗=𝑡1

(1 − 𝛾)𝑗−𝑡1 𝛽1,𝑗

⎞⎟⎟
⎠

= log ⎛⎜⎜
⎝

∑∞
𝑗=𝑡2

(1 − 𝛾)𝑗−𝑡2 𝛽0,𝑗

∑∞
𝑗=𝑡1

(1 − 𝛾)𝑗−𝑡1 𝛽0,𝑗

⎞⎟⎟
⎠
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Parallel trends (log (𝛽𝑡)

Proposition (Parallel trends: Log 𝛽𝑡)
Assuming an SIR data-generating process and a log-transformed effective reproduction number specification
(𝑌𝑑,𝑡 = log (𝛽𝑑,𝑡) , 𝑔(⋅) = log(⋅)), the parallel trends assumption holds for all 𝑡1, 𝑡2 > 𝑡 − 1 if and only if

log (𝔼 [𝑌1,𝑡2 (0)]) − log (𝔼 [𝑌1,𝑡1 (0)]) = log (𝔼 [𝑌0,𝑡2 (0)]) − log (𝔼 [𝑌0,𝑡1 (0)]) ⟺

log (𝛽1,𝑡2 ) − log (𝛽1,𝑡1 ) = (log(𝛽0,𝑡2 ) − log (𝛽0,𝑡1 )
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ATT Interpretations
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Average marginal effects
Algorithm 1 (Estimation of average marginal effects for log incidence and log growth specifications) Given the
observed outcomes in the treated units, 𝑌1, ..., 𝑌𝑁1 , and the estimated ATT, ̂𝛿𝑡, we impute the AME:

1. Calculate the fitted untreated potential outcome for the treated group in the scale of the model
specification for each treated unit 𝑖 and post-intervention period 𝑡 > 𝑇0 using the observed empirical
outcome trajectory and the estimated ATT: 𝑌𝑑(0) = 𝑌𝑑,𝑡 − ̂𝛿𝑡

2. Recover the fitted untreated potential outcome for the treated unit 𝑖 in the case scale, 𝐼∗
𝑑,𝑡(0), from

�̂�𝑑,𝑡(0) according to the definition of model specifications per Table ??. For log growth, we take the last
period prior to intervention as baseline, and construct the untreated potential outcomes by dividing the
baseline outcome by the fitted treatment effect coefficient. We repeat division for each post-intervention
period to recover the untreated trajectories for the treated units.

3. Calculate the difference between the observed treated outcome and the fitted control potential outcome
trajectories to obtain the marginal effect (ME) for each unit 𝑖 over the entire post-intervention time
periods: 𝑀𝐸𝑖 = ∑𝑇

𝑡=𝑇0+1 (𝐼∗
𝑑,𝑡 − 𝐼∗

𝑑,𝑡(0))
4. The AME is given by the average of the calculated differences over all treated units:

𝐴𝑀𝐸 = 1
𝑁1 ∑𝑁

𝑖=1 (𝑀𝐸𝑖)

Algorithm 2 (Estimation of average marginal effects for log 𝑅𝑡 or log 𝛽𝑡 models) For COVID-19, we assume on
average 5 days of infectiousness and 3 days of mean exposure period. We use input data on the initial susceptible
fraction and infections, as well as empirically estimated effective contact rates over the period of interest
𝛽𝑡, 𝑡 ∈ [𝑡1, 𝑡2]. We then use estimated time-varying ATTs for the effective contact rate, ̂𝛿𝑡 to impute the AME:

1. Calculate the fitted treated potential outcomes as an average from 1000 infection trajectories simulated
from an SEIR model with effective contact rates set to (𝛽𝑡 + ̂𝛿𝑡), corresponding to an effective
reproduction number 𝑅𝑡 = 5 (𝛽𝑡 + ̂𝛿𝑡).

2. Calculate the fitted untreated potential outcomes for the treated group as an average from 1000 infection
trajectories simulated from an SEIR model with effective contact rate set to 𝛽0, corresponding to an
effective reproduction number 𝑅𝑡 = 5𝛽0.

3. The AME for a log 𝑅𝑡 or a log 𝛽𝑡 model is then given by the difference in projected infections over the
post-intervention period between the two fitted trajectories.
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Inference

We conduct inference using the wild score bootstrap, which allows for valid inference
with heteroskedastic data and a small number of clusters when a generalized linear
model is used for estimation. This is a generalization of the wild cluster bootstrap.
Given any maximum likelihood estimation process, in each bootstrap replicate,

1. Estimate the score contribution for cluster 𝑐 as the sum of score vectors in all
observations from cluster 𝑐, where a score vector is the first derivative of the
log-likelihood function.

2. Re-weight the score distribution based on an auxiliary cluster-level random
variable with mean 0 and variance 1.

3. Calculate a Wald statistic is calculated using the weighted scores.
The p-value is the proportion of bootstrap replicates for which the bootstrapped Wald
statistics exceed the observed Wald statistic under the null.
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𝑅𝑡 and 𝛽𝑡 estimation (SIR)
Proposition (Estimation of 𝛽𝑑,𝑡)
Assuming an SIR data-generating process, with 𝐼𝑑,𝑡+1 ∼ 𝑃𝑜𝑖𝑠 (𝛽𝑑,𝑡𝑆𝑑,𝑡

𝑆𝑑,𝑡
𝑁 ), the maximum likelihood

estimator of 𝛽𝑑,𝑡 is:

̂𝛽𝑑,𝑡 =
𝐼∗

𝑑,𝑡+1

𝐼𝑑,𝑡
𝑆𝑑,𝑡

𝑁

Proof.
Because we assume:

𝐼∗
𝑡+1|𝐼𝑡 ∼ 𝑃𝑜𝑖𝑠 (𝛽𝑡𝐼𝑡

𝑆𝑡
𝑁 ) ,

the log-likelihood (ℓ) function can be defined:

ℓ (𝛽𝑡|𝐼∗
𝑡+1, 𝐼𝑡, 𝑆𝑡, 𝑁) ∝ 𝐼∗

𝑡+1 log (𝛽𝑡𝐼𝑡
𝑆𝑡
𝑁 ) − 𝛽𝑡𝐼𝑡

𝑆𝑡
𝑁

Setting
𝜕ℓ(𝛽𝑡|𝐼∗

𝑡+1,𝐼𝑡,𝑆𝑡,𝑁)
𝜕𝛽𝑡 = 0 to obtain the maximum likelihood estimator:

0 =
ℓ (𝛽𝑡|𝐼∗

𝑡+1, 𝐼𝑡, 𝑆𝑡, 𝑁)
𝜕𝛽𝑡

⟹ ̂𝛽𝑡 = 𝐼∗
𝑡+1

𝐼𝑡
𝑆𝑡
𝑁
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Timestep aggregation

Proposition (DiD with time-step aggregation)
Suppose that the parallel trends assumption holds with a log link for every pair of individual pre- and
post-intervention time steps between the average outcome in the treated and comparison groups. That is, for any
individual time steps 𝑡1 ≤ 𝑇0 and 𝑇0 < 𝑡2 ≤ 𝑇 , we assume

log (𝔼 [𝑌1,𝑡2 (0)] ) − log (𝔼 [𝑌1,𝑡1 (0)] ) = log (𝔼 [𝑌0,𝑡2 (0)] ) − log (𝔼 [𝑌0,𝑡1 (0)] )

Then, the following parallel trends assumption holds over aggregated time intervals:

log (𝔼 [𝑌1,𝑡(0)∣𝑡 ∈ 𝜏2]) − log (𝔼 [𝑌1,𝑡(0)∣𝑡 ∈ 𝜏1]) = log (𝔼 [𝑌0,𝑡(0)∣𝑡 ∈ 𝜏2]) − log (𝔼 [𝑌0,𝑡(0)∣𝑡 ∈ 𝜏1]) ,

where 𝜏1 and 𝜏2 denote arbitrary combination of pre- and post-intervention time periods, respectively.
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Multiple units and time periods

We can extend the parallel trends assumption to both multiple units and multiple time
periods:

𝑔(𝔼 [𝑌𝑖,𝑡(0)∣𝑖 ∈ 𝒩1, 𝑡 ∈ 𝒯1] ) − 𝑔(𝔼 [𝑌𝑖,𝑡(0)∣𝑖 ∈ 𝒩1, 𝑡 ∈ 𝒯0] ) =

𝑔(𝔼 [𝑌𝑖,𝑡(0)∣𝑖 ∈ 𝒩0, 𝑡 ∈ 𝒯1] ) − 𝑔(𝔼 [𝑌𝑖,𝑡(0)∣𝑖 ∈ 𝒩0, 𝑡 ∈ 𝒯0] ), (1)

• Multiple periods: sufficient to assume parallel trajectories
• Multiple units: more complex for incidence
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Power simulation parameters
Parameter Description Values

𝑁 Total number of units 50

𝑁1 Number of treated units 25

𝑝𝑜𝑝 Population size for each unit {5, 000, 10, 000}
𝑇 Total number of weeks 17

𝑇𝑏𝑢𝑟𝑛𝑖𝑛 Weeks in the burn-in period 5

𝑇0 Weeks in the pre-intervention period 4

𝐼0 Infections at time 0 100

𝛽 Effective contact rate {0.100, 0.115}
𝛾 Generation interval 10 days

𝜙
Ratio in the effective contact rates
between the treated and control
groups

{1.0, 1.1}

𝛿 Effect size {0.70, 0.80, 0.90, 0.95, 1.00, 1.05, 1.10, 1.20, 1.30}
𝛼 Statistical significance level 0.05
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